1. **Delays**
Consider an inverter driving a capacitive load in ASAP7 technology.

All transistors have W/L = 4, $V_{DD} = 0.75$V. In this technology, you can assume that $C_g = C_d = 2fF/\mu m$, transistor thresholds are 0.25V and fanout-of-4 inverter delay is 12ps.

a) For what range of sizes of the load capacitor, C_L, adding another inverter to drive the load reduces the delay?

b) If the input capacitance of the first inverter in the figure below is set to $C_1 = 1.5fF$, the wire capacitance C_w is 3fF, how would you size the second inverter that is driving 6.75fF load to minimize the overall delay from In to Out? Is this result intuitive?

![Diagram of inverter driving a capacitive load](attachment:diagram.png)

2. **Latch timing**
A timing path with a single register driving a latch-based system is shown in Figure 2. R0 is a rising-edge triggered register, while R1, R2, and R3 are level sensitive. There are two 50% duty cycle clock phases available, with clkb offset from clk by half a period. Both registers and latches have zero hold time, and there is no clock skew in the system. Registers have $t_{clk-Q} = 100$ ps. Latches have $t_{clk-Q} = t_{D-Q} = t_{su} = 100$ ps.
a) The critical path of S1 is 400 ps, the critical path of S2 is 500 ps, and the critical path of S3 is 1.3 ns. Compute the minimum clock period.
b) Assume that we can model the on current with $I_{\text{on}} = K(V_{DD} - V_{thz})$, with $K = 0.002$, $V_{DD} = 0.75$ V, and $V_{thz} = 0.25$ V. There is a systematic variation on V_{thz}. What is the maximum value of V_{thz} that leads to a 10% increase in delay?
c) The systematic variation of V_{thz} is normally distributed with $\sigma = 0.03$ V. What would be the yield in terms of timing if you are allowed a 10% margin on the clock period?