EE241B: Advanced Digital Circuits

Lecture 1 – Introduction

Borivoje Nikolić

Tuesdays and Thursdays 9:30-11am
Virtual
Class Goals and Expected Outcomes
Practical Information

• Instructor:
 • Borivoje Nikolić
 Physical location (some day): 509 Cory Hall, 3-9297, bora@eecs
 Office hours: M 4-5pm or by appointment

• GSI:
 • Harrison Liew harrisonliew@berkeley

Class Discussion
 http://piazza.com/berkeley/spring2020/ee241b
 Sign up for Piazza!

Class Web page
 inst.eecs.berkeley.edu/~ee241b
Class Topics

• This course aims to convey a knowledge of advanced concepts of digital circuit and system design in state-of-the-art technologies.
 • Emphasis is on the circuit and chip design and optimization for both energy efficiency and high performance for use in modern systems-on-a-chip that include application processors, signal and multimedia processors, communications, memory, interconnects and peripheral devices. Special attention will be devoted to the most important challenges facing digital system designers today and in the coming decade, being the impact of slowdown in scaling, nanoscale effects, variability, power-limited design and timing.

• We will use qualitative analysis when practical

• Many case studies will be used to highlight the design techniques
EECS251A vs. EE241B

• EECS 251A:
 • Emphasis on digital logic design
 • (Very) basic transistor and circuit models
 • Basic circuit design styles
 • First experiences with design – creating a solution given a set of specifications
 • A complete pass through the design process

• EE 241B:
 • Understanding of technology possibilities and limitations
 • Transistor models of varying accuracy
 • Design under constraints: power-constrained, flexible, robust,…
 • Learning more advanced techniques
 • Study the challenges facing design in the coming years
 • Creating new solutions to challenging design problems, design exploration
Special Focus in Spring 2021

- Current technology issues
- Process variations
- Robust design
- Memory
- Energy efficiency
- Power management
- SoC components
- (Circuits for machine learning)
Class Topics

• Module 1: Fundamentals – Current technologies, SoC template (1.5 wks)
• Module 2: Models – From devices to gates, logic and systems (3 wks)
• Module 3: Design for performance (1.5 wks)
• Module 4: Memory, SRAM, variability, scaling options (2.5 wks)
• Module 5: Energy-efficient design (3 wks)
• Module 6: Clock and power distribution (1 week)
• Project presentations, final exam (1 week)
Class Organization

• 5 (+/-) assignments, with embedded labs (20%)
• 4 quizzes (10%)
• 1 term-long design project (40%)
 • Phase 1: Topic selection (Feb 20, after ISSCC)
 • Phase 2: Study (report by March 19, before Spring break)
 • Phase 3: Design (report in RRR week)
 • Presentations, May 4, afternoon
• Final exam (30%) (Thursday, April 30, in-class)
Class Material

 • Available at link.springer.com

• Other reference books:
 • “VLSI Design Methodology Development” by, T. Dillinger, Pearson 2019.
 • “CMOS VLSI Design,” 4th ed, by N. Weste, D. Harris
Class Material

• List of background material available on website

• Selected papers will be made available on website
 • Linked from IEEE Xplore and other resources
 • Need to be on campus to access, or use library proxy, library VPN (check http://library.berkeley.edu)

• Class notes on website
Reading Assignments

• Three types of readings:
 • Assigned reading, that should be read before the class
 • Recommended reading that covers the key points covered in lecture in greater detail
 • Occasionally, background material will be listed as well
Reading Sources

- IEEE Journal of Solid-State Circuits (JSSC)
- IEEE International Solid-State Circuits Conference (ISSCC)
- Symposium on VLSI Circuits (VLSI)
- Other conferences and journals
Project Topics

• Focus this semester: Memories, power management, clocking

• Project teams: 2+ members, proportional to the size of the project
 • Can also do a bigger project merging with one of 290C classes

• More details in Week 2
Tools

• 7nm predictive model (ASAP7), with (mostly) complete design kit
 • Or TSMC 28nm process if enrolled in 290C as well
• HSPICE
 • You need an instructional (or research) account
• Cadence, Synopsys, available on instructional servers
• Berkeley’s open-source flows and tools
 • Chipyard, Hammer
• Other predictive sub-100nm models
 • Such as SAED32
Zoom

- Will post recordings. But focus on interactive lectures.
 - May pre-record some modules in advance
- Course notes available in advance.
- Be engaged in the discussions. You are part of the learning process.
Trends and Challenges in Digital Integrated Circuit Design
Reading (Lectures 1 & 2)

• Assigned
 • Rabaey, LPDE, Ch 1 (Introduction)
 • G.E. Moore, No exponential is forever: but "Forever" can be delayed! Proc. ISSCC’03, Feb 2003.
 • T.-C. Chen, Where CMOS is going: trendy hype vs. real technology. Proc. ISSCC’06, Feb 2006.

• Recommended
 • Chandrakasan, Bowhill, Fox, Chapter 1 – Impact of physical technology on architecture (J.H. Edmondson),
 • Chandrakasan, Bowhill, Fox, Chapter 2 – CMOS scaling and issues in sub-0.25μm systems (Y. Taur)

• Background: Rabaey et al, DIC Chapter 3.

• The contributions to this lecture by a number of people (J. Rabaey, S. Borkar, etc) are greatly appreciated.
Semiconductor Industry Revenues

Current State of Semiconductor Industry

Current GWP ~ 78,000 billion

Source: Statista
Global semiconductor market size by component worldwide from 2016 to 2022

Source(s): PwC; ID 512593
In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 12 months. He made a prediction that semiconductor technology will double its effectiveness every 12 months.

“The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term, this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000.”

Gordon Moore, Cramming more Components onto Integrated Circuits, (1965).
“Reduced cost is one of the big attractions of integrated electronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate.”

Electronics, Volume 38, Number 8, April 19, 1965

Source: Intel

Graph from S.Chou, ISSCC’2005
Moore’s Law - 2018

- Slowdown is apparent, but scaling continues
Moore’s Law and Cost
Progress in Nano-Technology

Molecular Electronics

Millipede

Spintronic device

Spintronic Storage

Carbon Nanotubes

T.C. Chen, Where Si-CMOS is going: Trendy Hype vs. Real Technology, ISSCC’06
Plan A: Extending Si CMOS

Plan B: Subsytem Integration

Plan C: Post Si CMOS Options

Plan Q: Quantum Computing

T.C. Chen, Where Si-CMOS is going: Trendy Hype vs. Real Technology, ISSCC’06
Technology Evolution

International Technology Roadmap for Semiconductors - 2003 data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dram ½ pitch [nm]</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>MPU transistors/chip</td>
<td>550M</td>
<td>1100M</td>
<td>2200M</td>
<td>4400M</td>
<td>8800M</td>
</tr>
<tr>
<td>Wiring levels</td>
<td>10-14</td>
<td>11-15</td>
<td>12-16</td>
<td>12-16</td>
<td>14-18</td>
</tr>
<tr>
<td>High-perf. physical gate [nm]</td>
<td>37</td>
<td>25</td>
<td>18</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>High-perf. V_{DD} [V]</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Local clock [GHz]</td>
<td>4.2</td>
<td>9.3</td>
<td>15</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>High-perf. power [W]</td>
<td>160</td>
<td>190</td>
<td>220</td>
<td>250</td>
<td>288</td>
</tr>
<tr>
<td>Cost-perf. power [W]</td>
<td>84</td>
<td>104</td>
<td>120</td>
<td>138</td>
<td>158</td>
</tr>
<tr>
<td>Low-power V_{DD} [V]</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>‘Low-power’ power [W]</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Roadmap Acceleration in the Past

Note: MPU ASIC Physical Bottom Gate Length Preliminary 2000 Update still under discussion.
Printed vs. Physical Gate

Nominal feature size

Gate Length

Physical gate length > nominal feature size after 22nm

Source: Intel, IEDM presentations
Transistors are Changing

- From bulk to finFET and FDSOI

<table>
<thead>
<tr>
<th>65/55 nm</th>
<th>45/40 nm</th>
<th>32/28nm</th>
<th>22/20nm</th>
<th>16/14nm</th>
<th>10nm</th>
<th>7nm</th>
<th>5nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>SiO₂/SiN</td>
<td>Strain</td>
<td>Intel, IEDM’07</td>
<td>HK/MG Strain</td>
<td>Intel, IEDM’09</td>
<td>TSMC, Samsung</td>
<td>Intel, VLSI’14</td>
</tr>
<tr>
<td>FinFET</td>
<td></td>
<td></td>
<td>Intel, IEDM’12</td>
<td></td>
<td>ST, VLSI’12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDSOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Varying Flavors in Each Node

- 32nm (and 28nm): Various flavors - Intel

<table>
<thead>
<tr>
<th>Logic Transistor (HP or SP)</th>
<th>Low Power Transistor (LP)</th>
<th>HV I/O Transistor (1.8 V or 3.3 V)</th>
</tr>
</thead>
</table>

Lg = 30/34nm
Lg = 46nm
Lg > 140nm

C.-H. Jan, IEDM’09, P. VanDerVoorn, VLSI Tech’10
5nm Flavors

![Graph showing 5nm Flavors]

Fig. 3 The 5nm also offers a set of critical HPC features. Extremely LVT (eLVT) for 25% faster peak speed over 7nm, and HPC 3-fin standard cell for additional 10% performance.
Putting Scaling in Perspective

Lisa Su, HotChips’19 keynote

Performance gains over the past decade

Integrated System Components
Micro-Architectural Efficiency
Power Management
Software
More Silicon Power
Bigger Die

HIGHER PERFORMANCE, DENSER, LOWER POWER TRANSISTORS
Power and Performance Trends

- What do we do next?
Cost Of Developing New Products

- These are non-recurring (NRE) costs, need to be amortized over the lifetime of a product
- We will attempt to dismantle this...
Major Roadblocks

1. Managing complexity
 How to design a 10 billion (100 billion) transistor chip?
 And what to use all these transistors for?

2. Cost of integrated circuits is increasing
 It takes >>$10M to design a chip
 Mask costs are many $M in 16nm technology

3. Power as a limiting factor
 End of frequency scaling
 Dealing with power, leakages

4. Robustness issues
 Variations, SRAM, memory, soft errors, signal integrity

5. The interconnect problem
Next Lecture

• Impact of technology scaling (and its end)
• Characteristics of current technologies