1 Singular Value Decomposition

Consider: Why is SVD useful?

Definition 1. A matrix \(M \in \mathbb{R}^{n \times n} \) is called orthogonal if all rows and columns of the matrix are mutually orthogonal. Moreover, if all rows and columns have a unit norm, the matrix is called orthonormal. So for an orthonormal matrix, we have \(M^T M = M M^T = I \), where \(I \) is an identity matrix of size \(n \times n \).

Theorem 2. Any \(m \times n \) matrix can be factored into \(A = U \Sigma V^\top \), where \(U \) is an \(m \times m \) orthogonal matrix, \(V \) is an \(n \times n \) orthogonal matrix, and \(\Sigma \) has the form

\[
\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \text{where} \quad \Sigma_1 = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix}
\]

where \(\text{rk} A = r \) and \(\sigma_1, \ldots, \sigma_r \) are the singular values of \(A \).

To do the proof/construction of the SVD, we need the following result:

Lemma 3. The columns of \(U \) are orthonormal eigenvectors of \(A A^\top \), the columns of \(V \) are orthonormal eigenvectors of \(A^\top A \) and \(\sigma_i^2 \)'s are the eigenvalues of \(A A^\top \) (or \(A^\top A \)).

Consider: Why are the columns of \(U \) are orthonormal eigenvectors of \(AA^\top \)? How about the columns of \(V \) being orthonormal eigenvectors of \(A^\top A \)?
Problem 1. Find the SVD of

\[A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \]

by first finding \(\Sigma \), then \(U \), then \(V \)
Consider. (Geometric Interpretation of SVD.) Consider the matrix

\[A = \begin{bmatrix} 3 & 7 \\ 5 & 2 \end{bmatrix} \]

with SVD

\[U = \begin{bmatrix} -0.8507 & -0.5257 \\ -0.5257 & 0.8507 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 8.7134 & 0 \\ 0 & 3.3282 \end{bmatrix}, \quad V = \begin{bmatrix} -0.5946 & 0.8041 \\ -0.8041 & -0.5946 \end{bmatrix} \]

How can we geometrically interpret the linear map \(A \) through its SVD? Consider the unit circle and let’s see how the matrix can transform it.

Let’s go step-by-step through how SVD decomposes this process into three transformations:

(a) Unit circle.
(b) \(V \) rotates.
(c) \(\Sigma \) scales.
(d) \(U \) rotates again.

Figure 1: Visual representation of linear map \(A \) acting on unit circle.

Figure 2: Visualization of SVD.
Problem 2. Matrix induced 2-norm. Prove that

\[\|A\|_2 = \max_{\|x\|_2 = 1} \|Ax\|_2 = \sigma_1 \]

Fact 1. (Relation between null, range, and SVD)

- The first \(k \) columns of \(U \) (first \(k \) left singular vectors) provide an orthonormal basis for the range of \(A \).
- The last \(n - k \) right singular vectors (the last \(n - k \) rows of \(V^T \)) provide an orthonormal basis for the null space of \(A \).

Problem 3. Suppose we have a constraint \(Ax = 0 \) with \(A \in \mathbb{R}^{m \times n} \) and \(x \in \mathbb{R}^n \). How can we come up with an expression for \(x \) in terms of \(A \) using the SVD?
2 Lipschitz Continuity

Definition 4. f is **globally Lipschitz continuous** (LC) if there exists a piecewise continuous function $k(t)$ such that

$$
\|f(x, t) - f(y, t)\| \leq k(t)\|x - y\|
$$

for all $x, y \in \mathbb{R}^n$, for all $t \in \mathbb{R}^+$.

f is **locally Lipschitz continuous** in $U \subset \mathbb{R}^n$, if for every $x, y \in U$, the Lipschitz property above is satisfied.

Consider. Which norm should we use to check the Lipschitz condition?

Problem 4. (Local or global Lipschitz condition.) Consider the following system of differential equations:

- $\dot{x}_1 = x_1^2 + x_2^2$
- $\dot{x}_2 = x_1^2 - x_2^2$

Prove that this system is locally Lipschitz, but not globally Lipschitz.
• See "Examples" section of Lipschitz wiki page https://en.wikipedia.org/wiki/Lipschitz_continuity
• Review solving first order ODEs. "Paul's notes" has six scalar ($x \in \mathbb{R}^1$) examples: https://tutorial.math.lamar.edu/Classes/DE/Linear.aspx

3 Practice Prelim Problem

L. El Ghaoui

January 19, 2010

Consider the set
$$A := \{x : Ax = b\}$$
where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are given.

1. What is the dimension of A? Does it depend on b?

2. How would you determine a basis of the nullspace and range of A numerically?

3. Assume $m = 1$, and let $A = a^T$, with $a \in \mathbb{R}^n$. Specify the answer to the previous question in that case.

4. We are given N data points $x_i \in \mathbb{R}^n$, $i = 1, \ldots, N$. We would like to project these points on a hyperplane, so as to visualize the points on a single line. How would you choose the hyperplane? Discuss.