Tips for doing proofs

- Don't be scared
- Writing things down!
 - Write precise definitions
 - Rewrite things in words in math notation
 - Simple example
 - In variables → try 2 variables
 - Variables → plug in some numbers
 - Work from start + end
 - What we know: ∴ look for connections between them
 - What we want to show:
 - Write down definitions & or facts that might be related
- You should understand all the steps in your proof
 - Your reader should understand
 - Add some justification
Types of proofs: (that we’ve introduced)

- Direct proof: series of mathematical steps.
 ▲ most common in this class

- Constructive proofs:
 "Show that there exists…"
 - give an example of something that meets the requirements

- Proof by contradiction:
 "Show there does not exist…"
 ▲ does not exist

→ assuming ▲ does exist
→ use this assumption
→ find a contradiction
 ex) \(10 = 0 \)
 ex) contradiction with a different assumption.
 \(\exists \vec{v}, \ldots \vec{v}_n \) are linearly dependent
 \(\exists \vec{v}, \ldots \vec{v}_n \) are linearly independent
Example 1

Let \(\tilde{x} \) be orthogonal to \(\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n \). Prove that \(\tilde{x} \) is orthogonal to any vector in the span \(\{\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n\} \).

Proof

By the def. of span

\[\tilde{v} \in \text{span} \{\tilde{a}_1, \ldots, \tilde{a}_n\} \]

if \(\tilde{v} = c_1 \tilde{a}_1 + c_2 \tilde{a}_2 + \ldots + c_n \tilde{a}_n \) is a representative vector in the span \(\{\tilde{a}_1, \ldots, \tilde{a}_n\} \)

Def of orthogonality

\[\langle \tilde{x}, \tilde{v} \rangle = 0 \]

\[\tilde{x}^T \tilde{v} = 0 \]

we also know

\[\langle \tilde{x}, \tilde{a}_1 \rangle = 0 \]

\[\tilde{x}^T \tilde{a}_1 = 0 \]

\[\vdots \]

\[\langle \tilde{x}, \tilde{a}_n \rangle = 0 \]

\[\tilde{x}^T \tilde{a}_n = 0 \]

Try:

\[\langle \tilde{x}, \tilde{v} \rangle = \langle \tilde{x}, c_1 \tilde{a}_1 + c_2 \tilde{a}_2 + \ldots + c_n \tilde{a}_n \rangle \]

\[= \langle \tilde{x}, c_1 \tilde{a}_1 \rangle + \langle \tilde{x}, c_2 \tilde{a}_2 \rangle + \ldots + \langle \tilde{x}, c_n \tilde{a}_n \rangle \]

\[= c_1 \langle \tilde{x}, \tilde{a}_1 \rangle + c_2 \langle \tilde{x}, \tilde{a}_2 \rangle + \ldots + c_n \langle \tilde{x}, \tilde{a}_n \rangle \]

\[= 0 \]

we've shown \(\tilde{x} \) is orthogonal to \(\tilde{v} \). Since \(\tilde{v} \) represents every vector in \(\text{span} \{\tilde{a}_1, \ldots, \tilde{a}_n\} \) we've shown \(\tilde{x} \) is orthogonal to \(\text{span} \{\tilde{a}_1, \ldots, \tilde{a}_n\} \).
Example 2 [MT 1 Fall 2019]

Thm If \(A \) has a non-trivial nullspace, then \(A \) is not invertible.

Proof

Given: \(A \vec{v} = \vec{0} \quad \vec{v} \neq \vec{0} \) \(\Rightarrow \) \(\exists \)

\[\text{Want to show: } A^{-1} \text{ does not exist} \]

\[\Rightarrow \text{hard.} \]

Assume \(A^{-1} \) exists. \(\exists \) "know"

Try: \(A^{-1} A \vec{v} = A^{-1} \vec{0} \) \(\Leftarrow \) left mult. by \(A^{-1} \)

\[\vec{v} = \vec{0} \quad \Leftarrow \text{doing math / def. of inverse} \]

Give a contradiction.

Therefore \(A^{-1} \) must not exist.

Contra positive

- If \(p \) then \(q \) equivalent to
- If not \(q \) then not \(p \)

If \(A \) is invertible then

\(A \) has a trivial nullspace.
Example 3

If \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \) and \(\vec{u} + \vec{v} + \vec{w} = \vec{0} \), prove \(\text{span} \{ \vec{u}, \vec{v}, \vec{w} \} = \text{span} \{ \vec{u}, \vec{v}, \vec{w} \} \).

1. If \(\vec{x} \in \text{span} \{ \vec{u}, \vec{v}, \vec{w} \} \) then \(\vec{x} \in \text{span} \{ \vec{u}, \vec{v}, \vec{w} \} \).
2. If \(\vec{y} \in \text{span} \{ \vec{u}, \vec{v}, \vec{w} \} \) then \(\vec{y} \in \text{span} \{ \vec{u}, \vec{v}, \vec{w} \} \).

Aside:
"if and only if"

→ prove both directions

1. \(\vec{x} = \alpha_1 \vec{u} + \alpha_2 \vec{v} \) for some \(\alpha_1, \alpha_2 \).

2. If \(\vec{u} = -\vec{v} - \vec{w} \),

 \[\vec{x} = \alpha_1 (-\vec{v} - \vec{w}) + \alpha_2 \vec{v} \]

 \[\vec{x} = -\alpha_1 \vec{w} - \alpha_1 \vec{v} + \alpha_2 \vec{v} \]

 \[\vec{x} = (\alpha_2 - \alpha_1) \vec{v} - \alpha_1 \vec{w} \]

 Let \(\beta_1 = \alpha_2 - \alpha_1 \)

 \(\beta_2 = -\alpha_1 \)

 Want to show: \(\vec{x} = \beta_1 \vec{u} + \beta_2 \vec{w} \) for some \(\beta_1, \beta_2 \).

2. \(\vec{y} = \beta_1 \vec{v} + \beta_2 \vec{w} \) for some \(\beta_1, \beta_2 \).

 \(\vec{w} = -\vec{u} - \vec{v} \)

 \[\vec{y} = \beta_1 \vec{v} + \beta_2 (-\vec{u} - \vec{v}) \]

 \[\vec{y} = \beta_1 \vec{v} + \beta_2 \vec{u} + \beta_2 \vec{v} \]

 \[\vec{y} = -\beta_2 \vec{u} + (\beta_1 - \beta_2) \vec{v} \]

 Let \(\alpha_1 = -\beta_2 \)

 \(\alpha_2 = \beta_1 - \beta_2 \)

 Want to show: \(\vec{y} = \alpha_1 \vec{u} + \alpha_2 \vec{v} \) for some \(\alpha_1, \alpha_2 \).
Example 4

Let \(P, Q \in \mathbb{R}^{n \times n} \) be square.

If \(Q \) has rank \(n \) and \(PQ = 0 \) (where \(0 \) is a matrix \((n \times n) \) of all zeros), prove that \(P \) must be all zeros.

Proof

Since \(Q \) is full rank, then we know \(Q \) is invertible.

\[
PQ Q^{-1} = OQ^{-1} \quad \text{left mult. by } Q^{-1}
\]

\[
P = 0
\]

Let columns of \(Q \) be \(\vec{q}_1, ..., \vec{q}_n \)

we know by def. of mat. multiplicaton

\[
P\vec{q}_i = \vec{0} \quad \alpha_1 P\vec{q}_1 + \alpha_2 P\vec{q}_2 + ... + \alpha_n P\vec{q}_n = \vec{0}
\]

\[
\text{P} \text{ is full rank, then}
\]

\[
P (\alpha_1 \vec{q}_1 + ... + \alpha_n \vec{q}_n) = \vec{0}
\]

since \(\text{span} \{ \vec{q}_1, ..., \vec{q}_n \} = \mathbb{R}^n \)

\[
P\vec{x} = \vec{0} \quad \text{for any } \vec{x}
\]

Assume \(P \neq 0 \). Then there is at least one column \(P_i \neq 0 \). If \(\vec{x} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \) in position

\[
P\vec{x} = \vec{P}_i \quad \text{contradiction with } P\vec{x} = \vec{0} \quad \text{for all } \vec{x}
\]

so \(P = 0 \).