EECS 16A DIS 4B

* Don’t forget, there’s a checkoff today.

Today’s topics

1. Capacitor Review (voltage, current, charge, energy)
2. Time dependent behavior of a changing capacitor
3. If time: Capacitor Equivalence derivations + practice
 → Appeared in lecture yesterday.

\[\text{Energy (stored in the capacitor)} \]
\[E = \frac{1}{2} CV^2 \]
\[= \frac{1}{2} \frac{Q^2}{C} \]
\[= \frac{1}{2} AV \left[\frac{C}{\epsilon} \right] \]
\[\rightarrow \text{[J]} \]

\[i = \frac{dQ}{dt} \]
\[Q = CV \]

Assuming a constant \(C \)

\[i = \frac{dQ}{dt} = \frac{d}{dt} (CV) = C \frac{dV}{dt} \]

\[i = \frac{dV}{dt} \]

\[C = \text{Capacitance} \] [Farads]
What is the charge + energy?

\[Q_1 = C V_1 \]

\[[F][V] = [C] \text{ coulombs, unit of charge} \]

\[V_5 = 1 \text{ V} \]

\[V_1 = V_5 \sqrt{\text{V}} \]

\[Q_1 = (1 \mu F)(1 \text{ V}) = \boxed{1 \mu C} \]

Q: How do SI prefixes combine?

\[10^3 \text{ milli}[A] \times \text{ milli}[B] = 10^{-3} \times 10^{-3} \text{ [AB]} = 10^{-6} \text{ [AB]} = \frac{\text{micro}[AB]}{\mu} \]

\[\text{milli}[A] \times \text{ [B]} = 10^{-3} \text{ [AB]} = \text{ milli}[AB] \]

\[E = \frac{1}{2} C V^2 = \frac{1}{2} (1 \mu F)(1 \text{ V})^2 = \boxed{\frac{1}{2} \mu \text{J}} \]

\[[F][V]^2 \text{ [V]} = \boxed{\frac{[J]}{[C][V]}} \]
After capacitors have had time to change:

\[V_s = V_1 + V_2 \] (true after charging)

\[V_s = \frac{Q_1}{C_1} + \frac{Q_2}{C_2} \]

\[Q = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]

\[V_s = \frac{C_1 C_2}{C_1 + C_2} \cdot V_s = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]

\[1 \text{V} = \frac{3}{4} \text{MC} \]

\[Q_1 = Q_2 = Q \]

Method 1:

1. Method 1: Look at both caps changing

2. Method 2: Use equivalence

Using method 2:

\[q \]

\[E_1 = \frac{1}{2} \frac{Q_1^2}{C_1} = \frac{1}{2} \cdot \frac{Q_1^2}{C_1} \]

\[E_2 = \frac{1}{2} \cdot \frac{Q_2^2}{C_2} = \frac{1}{2} \cdot \frac{(\frac{3}{4}MC)^2}{3 \text{MC}} = \frac{9}{32} \text{MJ} \]

\[\text{energy stored in each cap.} \]
How capacitors behave (with time) when charged by a constant current source.

\[I_s \uparrow \quad V_C = \frac{Q}{C_1} \quad V_{out}(t) \]

\[I_C = I_s \quad \text{(KCL @ top)} \]

\[C_1 \frac{dV_C}{dt} = I_s \quad V_C(t) = V_{out}(t) \]

\[\frac{dV_{out}}{dt} = \frac{I_s}{C_1} \quad V_{out}(t) = \frac{I_s}{C_1} (t - \tau) \]

\[V_{out}(t) = V_{out}(0) + \frac{I_s}{C_1} t \]

\[V_{out}(0) = 0 \quad \Rightarrow \quad V_{out}(t) = \frac{I_s}{C_1} t \]

Constant current leads to constantly increasing (linearly) voltage.
\[C_{eq} = c_1 + c_2 \]
(parallel capacitors)

\[V_{at}(t) = \frac{I_s}{C_{eq}} t = \left[\frac{I_s}{c_1 + c_2} \right] t \]
Using cap. equivalence
3. Deriving Parallel equivalent capacitance

(b) Deriving series

(c) Factoring using equivalence

\[Q = CV \]

\[i = C \frac{dV}{dt} \]

in lecture this was used

\[V_{eq} = V_1 = V_2 \text{ (parallel)} \]

\[Q_{eq} = \frac{Q_1 + Q_2}{Q_1} \text{ or } Q_{eq} \]

\[V_{eq} \sim Q_{eq} ? \]

\[Q_{eq} = C_1 V_{eq} + C_2 V_{eq} \]

\[Q_1 = C_1 V_1 = C_1 V_{eq} \]

\[Q_2 = C_2 V_1 = C_2 V_{eq} \]

\[Q_{eq} = C_{eq} V_{eq} = (C_1 + C_2) V_{eq} \]

\[C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \text{ (in parallel)} \]
Series eq. C: Assumption: both start unchanged both start with the same amount of charge

\[Q_{\text{eq}} = Q_1 = Q_2 \]

(series, same current dump's same change)

\[V_{\text{eq}} = V_1 + V_2 \]

\[V_{\text{eq}} = \frac{Q_{\text{eq}}}{C_1} + \frac{Q_{\text{eq}}}{C_2} = \left(\frac{1}{C_1} + \frac{1}{C_2} \right) Q_{\text{eq}} \]

\[Q_{\text{eq}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \frac{V_{\text{eq}}}{V_{\text{eq}}} = \frac{C_1 C_2}{C_1 + C_2} V_{\text{eq}} \]

\[C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2} \]

(series eq.,)

\[C_1 \| C_2 \]

\[\frac{A}{1B} \frac{A}{1+B} \]

operation, not shape of circuit
Extra: Not covered, but here for your use/learning/checking

3. Practice using series and parallel equivalence to reduce to a single equivalent

1. Check series \& parallel for pairs
 - $C_1 \cap C_2$? No, neither (bc of C_3, not series, bc of C_4 not parallel)
 - $C_4 \cap C_2$? also Neither
 - $C_2 \cap C_3$? Yes! Parallel

2. Calculate value
 \[C_{eq} = C_2 + C_3 \]

3. Redraw with substitution: The equivalent should be connected to the same pair of nodes (\bullet, \bullet)

4. Iterate!
 1. $C_1 \cap C_2 + C_3$ series
 2. $C_{eq} = C_1 \parallel (C_2 + C_3)$ (parallel operator doesn't distribute)
 3. $C_4 \parallel C_1 \parallel (C_2 + C_3)$
 4. $C_{eq} = \frac{1}{C_4 + C_1 \parallel (C_2 + C_3)}$
Extra: not covered during discussion but here for your use/learning.

Q: Why is equivalence useful?
 So far, we have learned of 4 kinds of equivalence:
 - Norton
 - Thevenin
 - Resistor
 - Capacitor
 Equivalence is actually useful to **analysis** (finding voltages + currents)

A: Equivalence is actually useful to **analysis** (finding voltages + currents)

A: It converts hard problems into easier problems with the same behavior.

Q: How to use it then? Here is a rough procedure:

A: 1. Reduce some subpart of a circuit to its equivalent (redraw the circuit)
 2. Calculate a voltage/current in the easier circuit
 3. Go back to un-reduced circuit/rewind the simplification you made
 4. Use new quantity you know to iterate, apply value
Examples:

Deriving Voltage divider using equivalence

1. **Reduce**
 - \(V_S \)
 - \(I \)
 - \(R_1 \)
 - \(R_2 \)

2. **Calculate**
 \[I = \frac{V_S}{R_1 + R_2} \]

3. **Rewind**

4. **Apply**
 - \(V_{R_1} = R_1 I = \frac{V_S}{R_1 + R_2} \)
 - \(V_{R_2} = R_2 I = \frac{V_S}{R_1 + R_2} \)

\(\Rightarrow \)

Tada! Very succinct!
Examples:

Objective: find \(V_{af} \) in terms of \(V_{in} \)

1. Reduce: \(2R_2 \) \& \(R_2 \) in series

2. Calculate!
 Use voltage division to find \(V_i \)
 \[
 V_i = \frac{R_i}{R_i + R_1} \cdot \frac{R_1}{3R_2} \cdot V_{in}
 \]

3. Rewind! \(\times 2 \) → 4. Apply: Use voltage divider again

Final answer:

\[
V_{af} = \frac{1}{3} \cdot \frac{R_1}{R_1 + R_1} \cdot \frac{3R_2}{V_{in}}
\]

Note: compute \(R_1/3R_2 \), compare to previous notes
Exercise: Try using Thevenin/Norton on previous example.

Hint: This circuit has a Norton equivalent.

Thing to look for in future:

Example:

Calculate Q on C_1, C_2, C_3, C_4.