1. **Op-Amp Rules and Negative Feedback Rule**

 Here is an equivalent circuit of an op-amp (where we are assuming that \(V_{SS} = -V_{DD} \)) for reference:

 ![Op-Amp Circuit](image)

 (a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are \(I^+ \) and \(I^- \))? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?

 (b) Suppose we add a resistor of value \(R_L \) between \(u_{out} \) and ground. What is the value of \(v_{out} \)? Does your answer depend on \(R_L \)? In other words, how does \(R_L \) affect \(A v_C \)? What are the implications of this with respect to using op-amps in circuit design?

 For the rest of the problem, consider the following op-amp circuit in negative feedback:

 ![Op-Amp Circuit with Negative Feedback](image)

 (c) Assuming that this is an ideal op-amp, what is \(v_{out} \)?

 (d) Draw the equivalent circuit for this op-amp and calculate \(v_{out} \) in terms of \(A \), \(v_{in} \), and \(R_L \) for the circuit in negative feedback. Does \(v_{out} \) depend on \(R_L \)? What is \(v_{out} \) in the limit as \(A \to \infty \)?

2. **An Inverting Amplifier**
(a) Calculate v_{out} as a function of V_s and R_1 and R_2.

3. **Charge Sharing**

Consider the circuit shown below. In phase ϕ_1, the switches labeled ϕ_1 are on while the switches labeled ϕ_2 are off. In phase ϕ_2, the switches labeled ϕ_2 are on while the switches labeled ϕ_1 are off.

(a) Draw the polarity of the voltage (using $+$ and $-$ signs) across the two capacitors C_1 and C_2. (It doesn’t matter which terminal you label $+$ or $-$; just remember to keep these consistent through phase 1 and 2!)

(b) Redraw the circuit in phase ϕ_1 and phase ϕ_2. Keep your polarity from part (a) in mind.

(c) Find V_{out} in phase ϕ_2 as a function of V_{in}, C_1, and C_2.

(d) How will the charges be distributed in phase ϕ_2 if we assume $C_1 \gg C_2$?