1. Identifying a Subspace: Proof

Is the set
\[V = \{ \vec{v} \mid \vec{v} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ where } c, d \in \mathbb{R} \} \]
a subspace of \(\mathbb{R}^3 \)? Why/why not?

2. Exploring Column Spaces and Null Spaces

- The column space is the span of the column vectors of the matrix.
- The null space is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of \(A \)? What is its dimension?

ii. What is the null space of \(A \)? What is its dimension?

iii. Are the column spaces of the row reduced matrix \(A \) and the original matrix \(A \) the same?

iv. Do the columns of \(A \) form a basis for \(\mathbb{R}^2 \)? Why or why not?

(a) \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\]

(b) \[
\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}
\]

(c) \[
\begin{bmatrix}
1 & 2 \\
-1 & 1
\end{bmatrix}
\]

(d) \[
\begin{bmatrix}
-2 & 4 \\
3 & -6
\end{bmatrix}
\]

(e) \[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix}
\]

3. Mechanical Determinants

(a) Compute the determinant of \[
\begin{bmatrix}
2 & 0 \\
0 & 3
\end{bmatrix}
\].

(b) Compute the determinant of \[
\begin{bmatrix}
2 & 1 \\
0 & 3
\end{bmatrix}
\].
Reference Definitions: Matrices and Linear (In)Dependence

The following statements are equivalent for an $n \times n$ matrix A, meaning, if one is true then all are true:

(a) A is invertible
(b) \iff The equation $A\vec{x} = \vec{b}$ has a unique solution for any \vec{b}
(c) \iff A has linearly independent columns
(d) \iff A has a trivial nullspace
(e) \iff the determinant of $A \neq 0$.

In class have shown/proven that:

(a) A is invertible \implies the equation $A\vec{x} = \vec{b}$ has a unique solution for any \vec{b}.
(b) A is invertible \implies A has linearly independent columns
(c) A is invertible \implies A has a trivial nullspace.

We have not yet shown/proven the implications in the other direction.