1. Op-Amp Rules and Negative Feedback Rule

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{SS} = -V_{DD}$) for reference:

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^+ and I^-)? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?

Answer:

The u^+ and u^- terminals have no closed circuit connection between them, and therefore no current can flow into or out of them. This is very good because we can connect an op-amp to any other circuit, and the op-amp will not disturb that circuit in any way because it does not load the circuit (it is an open circuit).

(b) Suppose we add a resistor of value R_L between u_{out} and ground. What is the value of v_{out}? Does your answer depend on R_L? In other words, how does R_L affect A_{VC}? What are the implications of this with respect to using op-amps in circuit design?

Answer:

Notice that u_{out} is connected directly to a controlled/dependent voltage source, and therefore v_{out} will always have to be equal to A_{VC} regardless of what R_L is connected to the op-amp. This is very advantageous because it means that the output of the op-amp can be connected to any other circuit (except a voltage source), and we will always get the desired/expected voltage out of the op-amp.

For the rest of the problem, consider the following op-amp circuit in negative feedback:
(c) Assuming that this is an ideal op-amp, what is v_{out}?

Answer:
Recall for an ideal op-amp in negative feedback, we know from the negative feedback rule that $u^+ = u^-$. In this case, $u^− = u_{\text{out}} = u^+$.

(d) Draw the equivalent circuit for this op-amp and calculate v_{out} in terms of A, v_{in}, and R_L for the circuit in negative feedback. Does v_{out} depend on R_L? What is v_{out} in the limit as $A \to \infty$?

Answer:
Notice that the op-amp can be modeled as a voltage-controlled voltage source. Thus, we have the following equation:

$$v_{\text{out}} = A(v_{\text{in}} - v_{\text{out}})$$

$$v_{\text{out}} + Av_{\text{out}} = Av_{\text{in}}$$

$$v_{\text{out}} = v_{\text{in}} \frac{A}{1+A}$$

Thus, as $A \to \infty$, $v_{\text{out}} \to v_{\text{in}}$. This is the same as what we get after applying the op-amp rule. Notice that output voltage does not depend on R. Thus, this circuit acts like a voltage source that provides the same voltage read at u^+ without drawing any current from the terminal at u^+. This is why the circuit is often referred to as a “unity gain buffer,” “voltage follower,” or just “buffer.”

2. **An Inverting Amplifier**

UCB EECS 16A, Summer 2020, Discussion 4D, All Rights Reserved. This may not be publicly shared without explicit permission.
(a) Calculate v_{out} as a function of V_s and R_1 and R_2.

Answer:
Because the op-amp is in negative feedback, we know that $u^+ = u^- = 0V$. Therefore, $v_{out} = u^- - V_{R_2} = -I_{R_1}R_2$.

We also know that $I^+ = 0$, so $I_{R_1} = I_{R_2}$. Thus, $v_{out} = u^- - V_{R_2} = -I_{R_1}R_2 = -I_{R_1}R_2 = -V_s \frac{R_2}{R_1}$.

3. Charge Sharing

Consider the circuit shown below. In phase ϕ_1, the switches labeled ϕ_1 are on while the switches labeled ϕ_2 are off. In phase ϕ_2, the switches labeled ϕ_2 are on while the switches labeled ϕ_1 are off.

(a) Draw the polarity of the voltage (using + and − signs) across the two capacitors C_1 and C_2. (It doesn’t matter which terminal you label + or −; just remember to keep these consistent through phase 1 and 2!)

Answer:
One way of marking the polarities is + on the top plate and − on the bottom plate of both C_1 and C_2. Let’s call the voltage drop across C_1 V_{C_1} and across C_2 V_{C_2}.

(b) Redraw the circuit in phase ϕ_1 and phase ϕ_2. Keep your polarity from part (a) in mind.

Answer:
Phase ϕ_1

Phase ϕ_2
(c) Find V_{out} in phase ϕ_2 as a function of V_{in}, C_1, and C_2.

Answer:

First, we must identify the floating node in phase ϕ_2. For this circuit, the floating node is u_3, as we can see that charge on the “+” plates of C_1 and C_2 cannot flow to ground.

Now that we know what plates are connected to our floating node, we must find the charge on those plates in phase ϕ_1. The two capacitors in series have a total capacitance of $C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$. We know that there is a voltage of V_{in} across this capacitor and thus $Q_{C_{\text{eq}}} = V_{\text{in}} \frac{C_1 C_2}{C_1 + C_2}$ charge. Because they’re in series, we know that the charge across the equivalent capacitance is the same as a charge across each individual capacitor. Since we are looking for the charge on the “+” terminals of those capacitors it will be:

$$Q_{u_3}^{\phi_1} = Q_{C_1} + Q_{C_2} = 2Q_{C_{\text{eq}}} = 2V_{\text{in}} \frac{C_1 C_2}{C_1 + C_2}$$

Similarly, we must find the charge on those plates in phase ϕ_2.

$$Q_{u_3}^{\phi_2} = V_C C_1 + V_C C_2 = (u_3 - 0)C_1 + (u_3 - 0)C_2 = (V_{\text{out}} - 0)C_1 + (V_{\text{out}} - 0)C_2 = V_{\text{out}}(C_1 + C_2)$$

Because of the conservation of charge, we can equate the total charge in phase ϕ_1 and phase ϕ_2.

$$Q_{u_3}^{\phi_1} = Q_{u_3}^{\phi_2} \Rightarrow 2V_{\text{in}} \frac{C_1 C_2}{C_1 + C_2} = V_{\text{out}}(C_1 + C_2) \Rightarrow V_{\text{out}} = 2 \frac{C_1 C_2}{(C_1 + C_2)^2} V_{\text{in}}$$

(d) How will the charges be distributed in phase ϕ_2 if we assume $C_1 \gg C_2$?

Answer:

We know that the capacitors are in parallel in phase ϕ_2, so the voltage across both capacitors is the same. Considering that $Q = CV$, if $C_1 \gg C_2$, then $Q_1 \gg Q_2$.