Lecture 39: Complex Circuits & Course Wrap Up

- Announcements:
 - Lab#6 due Friday, 12/11 (last day of RRR week)
 - 2nd Lab#6 Checkpoint due next week (breadboard circuit)
 - Will go through Final Exam Info Sheet today
 - Will also leave some time for Course Evaluations
 - For info on how, go to:
 https://drive.google.com/drive/folders/1aA0OzAk1Rt8DuDE9KSkKiQzN05whZUJ
 - Lecture Topics:
 - Complex Gates
 - Differential Pair (Op Amp)
 - Course Wrap Up
 - Final Exam Info Sheet
 - HKN Evaluations
 - Last Time:
 - Derived CMOS inverter propagation delay
 - Now, look at a more complex gate ...

Complex CMOS Gater

To realize more complex gaters, use the following structure:

- For CMOS, to save power consumption, must avoid a conductive path connecting V_{DD} and ground in steady-state
- Otherwise, too much current will flow and dissipate power
- Should also minimize this path during transitions

When this network provides a path to V_{DD}, the output should be a high or '1'

When this network provides a path to ground, the output should be a low or '0'
CMOS NOR Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y = A + B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

When both inputs are '0', there should be a path to VDD.

Anytime there is a '1' in the input, need to pull down to GND.

Start w/ Reference CMOS Inverter:

- Assume: \(\mu_nC_{ox} = 2.5 \mu_pC_{ox} \)

NOR Gate:

When \(V_N = V_{oh} \):

\[V_{DD} \]

\[C_L \]

\[R_{en} \]
Differential Gain: \(A_d = \frac{N_{d1} - N_{d2}}{N_{id}} = \frac{N_{ad}}{N_{id}} \) (Wont BIG)

Common-Mode Gain: \(A_{cm} = \frac{N_{o1} - N_{o2}}{N_{icm}} \) (Wont BIG)

Common-Mode Rejection Ratio: \(CMRR = \frac{A_{dm}}{A_{cm}} \)

Simple MOS Op Amp

\[N_0 = \frac{i_{R01} R_{D2}}{1 + \frac{1}{2} g_m N_{S5} R_{D2}} \]

\[\frac{N_0}{N_S} = \frac{1}{(N_4 - N_2)} \]

Get Gain: \(\frac{N_0}{N_S} = \frac{N_0}{N_4 - N_2} = A_0 \)

Remarks:
1. For more gain, add a common-source stage.
2. For lower \(R_{D1} \), add a common-drain stage.

All these things that you already know!
• What's Next?
• EE130: Semiconductor Devices
 ✈ Did you like the physics parts? If so, then this is the course for you.
 ✈ Will go much deeper and cover
 — Energy band diagrams
 — Short channel MOS
 — More accurate physical structure
 — Heterojunctions
 — Much more …
• EE143: Semiconductor Device Fabrication
 ✈ Planar wafer-level fabrication methods that make IC's possible
 ✈ Tools and chemistry
 ✈ Process flow design
 ✈ Hands-on wafer fabrication
• EE140: Analog Integrated Circuits
 ✈ Supply and temperature independent biasing
 ✈ Much larger circuits
 ✈ Deeper understanding of op amps
 ✈ Stability compensation
 ✈ Feedback methods (by inspection)
• EECS151: Digital Integrated Circuits
 ✈ Build upon propagation delay concepts
 — Short channel devices
 — Logic gates, adders, etc.
 ✈ System-level design
 — Interconnect issues
 — Programmable arrays

• What's Next? (cont.)
• EE147: Microelectromechanical Systems (MEMS)
 ✈ I'm biased, but … this is the coolest stuff, period!
 ✈ Mechanics and Materials
 ✈ Methods for fabricating tiny mechanics
 ✈ Mechanical circuit design
 ✈ You'll learn that all of your EE math skills and circuit techniques can just as easily be applied to mechanical devices and systems
 ✈ Applications to sensing and RF