Lecture 18: Bipolar Junction Transistors (BJTs) II

- Announcements:
 - HW#6 online and due Friday via Gradescope
 - Slight change to problem 2a and 2b to make things easier
 - Basically, 2b no longer asks for Cgs with the device in the saturation region; we can do this later when we discuss small-signal C
 - Lab#3 prelab due next week
 - Lab#3 experimental part due the week of 10/19

- Lecture Topics:
 - BJT Forward-Active Region
 - Physics
 - Large Signal Circuit Model
 - Operating Pt. Example
 - Reverse Active Region
 - Saturation Region

- Last Time:
 - Going through BJT physics
 - Now, continue with this …
Bipolar Junction Transistors II

BEJ Forward-Biased:

- Get diffusion current as in diode

 \[I_{BE} = A J_{diff} \]

- Forward-biasing of a BJT \(\rightarrow \) three current components:

 1. **E**'s injected from emitter to base:
 \[I_{EB} = -A J_{diff} \]

 2. **H**'s injected from base to emitter:
 \[I_{PE} = -A J_{diff} \]

 3. Recombination of **E**'s \& **H**'s in the base
 \[I_{RB} \propto \exp \left(\frac{N_{BE}}{VT} \right) \]

- \[I_C = I_{EB} + \]
- \[I_E = I_{EB} + I_{PE} + I_{RB} = 1 + 2 + 3 \]
- \[I_B = I_{PE} + I_{RB} = 2 + 3 \]

Diffusion Current:

\[I_{EB} = -A J_{diff} = -A q p_{nB} \frac{d p_{nB}}{dx} \]

Cross-sectional Area:

\[= -2A p_{nB} \frac{\left(N_{BE} \right) \cdot \left(N_{BE} \right)}{W_B} \]
Current Formulations

1. \(I_{NB} = -A J_{NB} = -A q D_{NB} \frac{dN_{PB}(x)}{dx} \)

 - Diffusion constant
 - Slope of minority carriers
 - \(e^{-x} \) in base
 - Concentration

\[n_{PB}(x) = \frac{n_i^2}{N_{PB}} \exp \left(\frac{V_{PB}}{V_T} \right) \approx 0 \]

\[n_{PB}(0) = \frac{n_i^2}{N_{PB}} \exp \left(\frac{V_{PB}}{V_T} \right) \]

\[I_{NB} = qA D_{NB} \frac{n_i^2}{N_{PB} W_B} \exp \left(\frac{V_{PB}}{V_T} \right) = 1 \]

\[i_C = 1 = I_s \exp \left(\frac{V_{BE}}{V_T} \right) \]

2. \(I_{PE} = A J_{PE} = qA D_{PE} \frac{dP_{PE}(x)}{dx} \)

 - Diffusion constant
 - Slope
 - \(e^{-x} \) in emitter

\[n_{PB}(0) = \frac{n_i^2}{N_{PB}} \exp \left(\frac{V_{PE}}{V_T} \right) \]

\[I_{PE} = qA D_{PE} \frac{n_i^2}{N_{PB} W_E} \exp \left(\frac{V_{PE}}{V_T} \right) = 2 \]

\[I_{PE}(-W_E) = 0 \]

3. \(I_{RB} = \frac{q \tau_b}{N_{PB} W_B} \exp \left(\frac{V_{PB}}{V_T} \right) \)

 - Minority carrier charge in the base

\[\tau_b = \frac{1}{q \tau_b} \left[\frac{1}{2} n_{PB}(0) W_B q A \right] \]

Define Forward Current Gain \(\beta_F \)

\[\beta_F = \frac{i_C}{i_B} = \frac{1}{1 + 2} = \frac{qA D_{NB} n_i^2}{N_{PB} W_B} \]

\[\beta_F = \frac{W_B^2}{2 \tau_B D_{NB} + \frac{D_{PE} W_B N_{PB}}{W_E N_{DE}}} \]

\[\beta_F = \left[\frac{W_B^2}{2 \tau_B D_{NB} + \frac{D_{PE} W_B N_{PB}}{W_E N_{DE}}} \right]^{-1} \]

\[\text{in log dB} \]
To maximize β_E, want:

1. W_E = Small
2. $N_{DE} >> N_{AB}$ leads to $D_{PE} << D_{NE}$
3. T_b = large → bare Si should be free of impurities/diffusion to prevent recombination of e^- and h^+

This is why emitter is npn.

So β relates i_b to i_c.

β = control variable, want to control i_c.

ΔN_{ab} small to ΔN_{ic} large.

So how do we relate i_c and i_e?

$$i_c = I_c \frac{1 + \beta}{\beta} = \frac{i_e}{\frac{\alpha}{1 + \beta}}$$

Where $\alpha = \frac{\beta}{1 + \beta}$

$$\beta = \frac{\alpha}{1 - \alpha}$$

If β is large, $\alpha \approx 1$, $\approx i_c \approx i_e$

Equiv. Large-Signal Ckt. Models for BJTs (in Forward-Active)

-> Several of them → two most popular ones:

- Common-Base (ccs)
 - $i_b = I_C \exp(-\frac{N_{BE}}{V_T})$
 - $i_c = I_C \frac{1 + \beta}{\beta} = \frac{i_e}{\frac{\alpha}{1 + \beta}}$

- Common-Emitter (ccs)
 - $i_c = I_C \frac{1 + \beta}{\beta} = \frac{i_e}{\frac{\alpha}{1 + \beta}}$

All quite close $\approx 0.7V$
Usually we use the above complicated models, but when we use this: (for Forward Active BJT)

For npn:

For pnp:

= the dual of npn
= good exercise: redo this model but for pnp.