Lecture 17: PMOS and Bipolar Transistors I

Announcements:
- HW#6 online and due Friday via Gradescope
- Lab#2 experimental part due this week
- Lab#3 prelab due next week
- Lab#3 experimental part due the week of 10/19

Lecture Topics:
- MOSFETs
 - Body Effect
 - PMOS
- Bipolar Junction Transistor (BJT)
 - Regions of Operation
 - Cutoff
 - Forward-Active

Last Time:
- Derived the saturation region MOSFET equation
- Now, continue with 2nd order effects ...

Saturation Region - \(V_{DS} > V_{GS} \cdot V_{TN} > 0 \)

As \(V_{DS} \to \) the voltage across the gate-to-substrate

capacitor near the drain:

\((V_{GS}-V_{TN}-V_{DS}) \to 0 \) @ the drain edge

At this point, \(i_{DS} \) has reached its ideal maximum value

\(V_{DS} > V_{GS} \cdot V_{TN} \)

\(i_{DS} = \frac{1}{2} \mu_C (N_{GS} - V_{TN}) \cdot \frac{(N_{GS} - V_{TN})}{L} \) \(V_{GS} = V_{GS} \cdot V_{TN} \)

\(i_{DS} = \frac{1}{2} \mu_C (N_{GS} - V_{TN})^2 \) \(V_{GS} = V_{GS} \cdot V_{TN} \)

onset of Saturation
\[i_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \]

This is the linear region. In the saturation region,

\[\Delta L = \frac{2}{N_{DS}} \]

Use boundary theorem:

\[(L + \Delta L) = (1 + \lambda N_{DS}) L \]

\[\lambda = \frac{\Delta L}{L} = \frac{2}{N_{DS}} \]

This is the channel length modulation parameter:

\[0.001 \leq \lambda \leq 0.1 \text{V}^{-1} \]

For a long-channel device:

\[N_{DS} \rightarrow V_{DS} - V_{TH} \]

For a short-channel device:

\[N_{DS} \rightarrow \text{symmetric device?} \]
Body Effect (Substrate Sensitivity):

- Threshold voltage V_{TN} is a function of the substrate bias voltage v_{SB}
- Reason: (simple version)
 - As v_{SB} ↑ ⇔ maximum channel depletion region gets larger (i.e., it can hold more charge)
 - Need more V_{GS} to invert the channel ⇒ V_{TN} ↑

![Diagram](https://via.placeholder.com/150)

Governing Threshold Voltage Equation

$$V_{TN} = V_{T0} + \theta (\sqrt{N_{SB} - 2\phi_f} - \sqrt{2\phi_f})$$

Where V_{T0} = voltage of V_{TN} for $N_{SB} = 0V$ [V]

θ = body effect parameter [\sqrt{V}]

$2\phi_f$ = surface potential parameter [V]

Remarks: (for a typical NMOS transistor)

1. $-5V \leq V_{T0} \leq 5V$ → but usually 0.7V
 - V_{T0}: (+) → enhancement mode NMOS
 - V_{T0}: (-) → depletion mode NMOS (but out of the scope of this class)

2. $0 \leq \theta \leq 3 \sqrt{V}$ → typically, $0.5 \sqrt{V}$

3. $0.3V \leq 2\phi_f \leq 1V$ → for us, generally 0.6V
• Basically, the reverse of NMOS transistors
• Physics basically the same, but the carriers are now \(h^+ \) and the voltage polarities reverse

\[V_{DD}, \quad e^- \text{ (for depletion PMOS)} \]

\[V_{DD}, \quad e^- \text{ (for enhancement PMOS)} \]

PMOS Transistor Model Summary

1. **Cutoff Region**: \(N_{SD} \leq -V_{TP} \)
 \[i_{SD} = 0 \]

2. **Linear (or Triode) Region**: \(N_{SG} + V_{TP} \geq N_{SD} \geq 0 \)
 \[i_{SD} = K_p \left(N_{SG} + V_{TP} - \frac{N_{SD}}{2} \right) N_{SD} \]
 \[= \mu_p C_{ox} \frac{W}{L} \left(N_{SG} + V_{TP} - \frac{N_{SD}}{2} \right) N_{SD} \]

3. **Saturation Region**: \(N_{SD} \geq N_{SG} + V_{TP} \geq 0 \)
 \[i_{SD} = \frac{1}{2} K_p \mu_p C_{ox} \frac{W}{L} \left(N_{SG} + V_{TP} \right)^2 \left(1 + \lambda N_{SD} \right) \]
 \[= \frac{K_p}{2} \left(N_{SG} + V_{TP} \right)^2 \left(1 + \lambda N_{SD} \right) \]
where for all regions:

\[k_p = k_p l = \mu_p C_{ox} \frac{W}{L} \]

\[i_G = 0 \] and \[i_B = 0 \]

\[V_{TP} = V_{TO} - \gamma (\sqrt{V_{BS} + 2 \phi_f} - \sqrt{2 \phi_f}) \]

\[\mu_p \] = hole mobility in the channel

\[C_{ox} \] = gate oxide per unit area

\[V_{TO} \] = threshold voltage w/ \(V_{SB} = 0 \) V

\[\gamma \] = body effect parameter

\[2 \phi_f \] = built-in surface potential \(\approx 0.6V \)
Regions of BJT Operation

<table>
<thead>
<tr>
<th>EBJ</th>
<th>CBJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **EEJ** - Forward bias, Re-reverse bias
- **EBJ** - Cutoff (both diodes off)
- **CBJ** - Reverse Active (widely used in analog amplifiers)
- **EBJ** - Saturated

⇒ Or graphically:

- npn
 - Reverse Active
 - Saturation
 - Cut-off

- pnp
 - Reverse Active
 - Saturation
 - Cut-off

⇒ BOTH diodes reverse-biased

- No current flow.
 - $i_B = 0$, $i_C = 0$, $i_E = 0$

⇒ Cutoff Region: (npn transistor)

- $V_{BE} = L^-$
- $V_{BC} = L^-$

- BOTH diodes reverse-biased

- **Ideal model**
 - Includes the tiny reverse currents

- **Real model**
Forward-Active Region: (nnp transistor)

BEJ forward-biased (i.e., diode on)

BCJ reverse-biased (i.e., diode off)

Minority Carrier Concentrations:

\[N_{BE} = \text{(+)} \quad N_{BC} = \text{(-)} \quad N_{CB} = \text{(+) \, (n)} \]