I. Lab 6 Extension – **Now due Saturday, 12/12/20 @ midnight**

II. 2019 Final Exam
Problem 1. Total 20 points

This problem considers the DC biasing of the 4-stage amplifier circuit shown below with element values and transistor parameters. (You will not be asked to do any small-signal analysis.) Find the DC voltage V_{BE} at the emitter of transistor Q_1 for $R_1=4\,\Omega$ and $R_2=210.5\,\Omega$. Note that some of the transistors may not be operating in the forward active region.

For all transistors:

$\beta = 200, V_{BE(on)} = 0.7V, V_{BE(on)} = 0.8V, V_{CE(on)} = 0.2V, V_T = 200V, V_T = 25\,mV$

In solving this problem, you may use approximations where applicable, but be careful. Your answer is correct if it is within 5% of the correct answer.
Fall 2019 Final | Problem 1

\[V_{CE2} = 0.7V > V_{CE, sat} \Rightarrow Q_2 \text{ in F.A. } \checkmark \]

Still assuming \(Q_3 \) in F.A.

\[I_{E3} = \frac{9.6V}{1k\Omega} = 9.6 \text{ mA} \]

\[V_{C3} = V_{CE} - I_{C3} R_{C3} = 10 - (9.6 \text{ mA})(5k\Omega) = -33V < V_{CE(sat)} \]

\(\Rightarrow Q_3 \text{ is in saturation!} \)

\(\because I_{C3} \neq I_{E3}, \quad V_{CE3} = V_{CE(sat)} = 0.2V \)

\[V_{BE3} = V_{BE(sat)} = 0.8V \]

\[V_{E3} = 8.5V \Rightarrow V_{C3} = V_{E3} + V_{CE(sat)} = 8.7V \]

\[V_{CE4} = 10 - 8 = 2.0V > V_{CE(sat)} \text{ confirms F.A.,} \]

For all transistors:

\(\beta = 200, V_{BE(on)} = 0.7V, V_{BE(sat)} = 0.8V, V_{CE(sat)} = 0.2V, V_T = 25mV \)

Assume \(Q_4 \) in F.A. \(V_{E4} = V_{C3} - V_{BE(on)} = 8.0V \)

\(V_{CE4} = 10 - 8 = 2.0V > V_{CE(sat)} \)
For all transistors:

$\beta = 200$, $V_{BE(on)} = 0.7 \text{V}$, $V_{BE(sat)} = 0.8 \text{V}$, $V_{CE(sat)} = 0.2 \text{V}$, $V_A = 200 \text{V}$, $V_T = 25 \text{mV}$
Problem 2: Total 80 points

This problem involves the BiCMOS amplifier circuit shown below, together with relevant data for devices.

![BiCMOS Amplifier Circuit](image)

Device Parameters:
- npn BJT: $V_I = 25\text{mV}$, $V_{BEB(off)} = 0.7V$, $V_{BEB(on)} = 0.8V$, $V_{CE(off)} = 0.2V$, $\beta = 200$, $V_i = 200V$
- Base Doping Conc. = $N_{A_B} = 10^{17} \text{cm}^{-3}$, Collector Doping Conc. = $N_{A_C} = 10^{18} \text{cm}^{-3}$
- Collector-Base Overlap Area = $60 \times 45 \mu\text{m}^2$, $f_T = 400\text{MHz}$
- NMOS: $V_{TN} = 0.7V$, $2\phi_i = 0.6V$, $K_s = 30\mu\text{A/V}^2$, $\lambda_n = 0 \text{ V}^{-1}$, $\gamma_n = 0 \text{ V}^{-1/2}$

Answer the following questions regarding this circuit.

(a) Determine the value of R_E1 that sets the collector current of Q_1 to 1mA.

For the rest of this problem, assume the collector current of Q_1 is 1mA and the drain current of M_2 is 0.7mA.

(b) Write an expression for the input resistance R_i and provide a numerical value.

(c) Write an expression for the output resistance R_o and provide a numerical value.

(d) Write an expression for the mid-band gain (v_o/v_i) and provide a numerical value.

(e) Write an expression for the upper cut-off frequency in terms of small-signal parameters.

(f) Calculate the zero-bias base-to-collector junction capacitance C_{ij} for Q_1.

(g) Calculate the contribution to the high frequency time constant from the node at the base of Q_1.

(a) $I_{C1} = 1mA = I_{E1} = \frac{V_{E1}}{R_{E1}}$

$V_{B1} \approx V_{BB} = \frac{R_2}{R_1 + R_2} V_{CC} = 5.33V$

$R_{E1} = \frac{V_{E1}}{I_{C1}} = \frac{4.63}{1mA}$

$b) \ R_{in} \ @ \ text{mid band}$

- C_{E1} short $R_{E1} \rightarrow$ C.E. $\rightarrow R_b = \beta_{200}$

- $R_{in} = \frac{R_1 R_2}{R_B} R_{\beta}$

- $r_{\beta_{200}} = \frac{200}{9m_1}, m_1 = \frac{I_{C1}}{V_T}, V_T = 25mV$

$R_{in} = 4.082k\Omega$
\(I_{D2} = 0.7 \text{mA (given)} \)

(c) \(R_{out} = ? \) @ midband

For MOSFET \(\beta = \frac{I_D}{I_G} = \frac{V_D}{I_G} = \infty \)

\[
R_s = \frac{\alpha}{g_m 2} = \frac{1}{g_m 2} \quad \text{where} \quad \alpha = 1
\]

\[
R_{out} = R_{S2A} || \left(\frac{1}{R_{S2B} + \frac{1}{g_m 2}} \right)
\]

\[
g_m = \frac{2I_{D2}}{V_D} = \sqrt{2f_{DM} \cdot \lambda_2 (W/L)^2} = 2.05 \times 10^{-4} \text{ S}
\]

\[
R_{out} = 696 \Omega
\]

Device Parameters:
- npn BJT: \(V_t = 25 \text{mV}, V_{BE(on)} = 0.7 \text{V}, V_{BE(off)} = 0.8 \text{V}, V_{CE(sat)} = 0.2 \text{V}, \beta = 200, V_a = 200 \text{V} \)
- Base Doping Conc. = \(N_a = 10^{17} \text{ cm}^{-3} \), Collector Doping Conc. = \(N_c = 10^{15} \text{ cm}^{-3} \)
- Collector-Base Overlap Area = \(60 \times 45 \text{ \mu m}^2 \), \(f_t = 400 \text{MHz} \)
- NMOS: \(V_{TH} = 0.7 \text{V}, 2|\phi| = 0.6 \text{V}, K_o = 30 \mu \text{A/\text{V}^2}, \lambda = 0 \text{ V}^{-1}, \gamma = 0 \text{V}^{-1/2} \)
\(\frac{\Delta V_o}{\Delta V_S} = \frac{\mu b_1 \cdot V_{C1} \cdot \Delta V_S}{\beta_1 \cdot V_{C1} \cdot \Delta V_S} \)

\(= \left(\frac{R_{in}}{R_{in} + R_S} \right) \left(-g_{m1}(R_{c1}||R_0) \right) \left(G_{m2} \cdot R_S \right) \left(\frac{R_{S2B}}{R_{S2A} + R_{S2B}} \right) \left(\frac{1}{R_{S2B}} \right) \)

\(= \frac{9}{1 + g_{m2}R_S} \)

\(V_{o} = -185 \text{ V/V} \)

\(C_{MO} = \frac{e_{si}A_o}{\chi d_o} = \frac{(11.7)(8.85 \times 10^{-12} \text{ F})}{(60 \mu \text{m} \times 45 \mu \text{m})} \)

\(\chi d_o = \sqrt{\frac{2eS}{q} \left(\frac{1}{N_{AB}} + \frac{1}{N_{OC}} \right)} \phi_j = 0.32 \mu \text{m} \)

\(\phi_j = \frac{kT}{q} \ln \left(\frac{N_{AB}N_{OC}}{n_i^2} \right) = 0.73 \text{ V} \cdot C_{MO} = 0.89 \text{ pF} \)
(e) $f_H = ?$ [expression]

$\tau_0 = \left[C_m (1 + g_m R_{C1}) + C_{gs1} \right] (R_S \parallel R_{in})$

$\tau_0 = \left(C_m + C_{gs1} + C_{gd2} \right) (R_{C1} \parallel R_{in})$

$\tau_0 = C_{gs2} \cdot \left(\frac{1}{g_m + g_m + g_{nb2}} \right) \left(R_S \parallel R_{S2A} + R_{S2B} \right)$

$C_{gs2} = C_{gs2} \cdot R_{gso} = C_{gs2} \left[\frac{1}{g_m R_{S2A} + R_{S2B}} \right]$

same as R_{110} but for MOS

$f_H = \frac{1}{2 \pi \left(\tau_0 + \tau_2 + \tau_3 + \tau_{gs2} \right)}$
This problem considers the combined analog/digital circuit below (called a current-starved inverter), where the (W/L) ratios given are in microns and device data is provided in the box below. Here, M_1 and M_2 behave like switches, which for the purposes of this problem you can treat as ideal. Also, you can ignore Body effect and transistor intrinsic capacitors.

Device Parameters:

- **NMOS:**
 - $V_{Tn} = 0.7V$
 - $\mu_C \cdot W = 200 \mu A/V^2$
- **PMOS:**
 - $V_{TP} = 0.7V$
 - $\mu_C \cdot W = 100 \mu A/V^2$

Determine the value of R_{REF} that gives an output high-to-low propagation delay $t_{PHL} = 20ns$ when the input voltage V_i goes from 0V to 3V.
This problem considers the combined analog/digital circuit below (called a current starved inverter), where the \(W/L \) ratios given are in microns and device data is provided in the box below. Here, \(M_1 \) and \(M_2 \) behave like switches, which for the purposes of this problem you can treat as ideal. Also, you can ignore Body effect and transistor intrinsic capacitors.

Device Parameters:
- **NMOS:**
 - \(V_{TN} = 0.7V \)
 - \(\mu_nC_{ox} = 200\mu A/V^2 \)
- **PMOS:**
 - \(V_{TP} = 0.7V \)
 - \(\mu_pC_{ox} = 100\mu A/V^2 \)

Determine the value of \(R_{REF} \) that gives an output high-to-low propagation delay \(\tau_{H-L} = 20\text{ns} \) when the input voltage \(V_i \) goes from 0V to 3V.

\[
I_{ref} = 75\mu A = \frac{V_{ref}}{R_{ref}} \\
I_{ref} = (V_{DD} - V_{S46} - V_{GSS} - V_{EE}) \\
R_{ref} = \frac{V_{DD} - |V_{GSS}| - V_{GSS}}{I_{ref}} = 5k\Omega \ \\
V_{GSS} = U_{TN} + \sqrt{\frac{2I_{ref}}{\mu_nC_{ox}(\frac{W}{L})}} = 1.31V \ \\
(V_{G46}) = |V_{TP}| + \sqrt{\frac{2I_{ref}}{\mu_pC_{ox}(\frac{W}{L})}} = 1.31V
\]
This problem considers the combined analog/digital circuit below (called a current starved inverter), where the \((W/L)\) ratios given are in microns and device data is provided in the box below. Here, \(M_1\) and \(M_2\) behave like switches, which for the purposes of this problem you can treat as ideal. Also, you can ignore Body effect and transistor intrinsic capacitors.

Device Parameters:
- **NMOS:**
 - \(V_{TH} = 0.7\)V
 - \(\mu_C C_{on} = 200\)\(\mu\)A/V\(^2\)
- **PMOS:**
 - \(V_{TH} = 0.7\)V
 - \(\mu_C C_{on} = 100\)\(\mu\)A/V\(^2\)

Determine the value of \(R_{REF}\) that gives an output high-to-low propagation delay \(t_{PHL} = 20\)ns when the input voltage \(V_I\) goes from 0V to 3V.
Problem 4. Total 35 points

This problem considers the circuit below, where the (W/L) ratios given are in microns and device data is provided in the box below. Assume the op amp is ideal and ignore Body effect.

Answer the following questions regarding this circuit.

(a) What is the voltage V_B? Check negative f. b. $w_{V_B} = V_{DD} - V_A = 1.3 \, V$

(b) Determine the value of R_{REF} that attains $I_{REF}=25 \, \mu A$.

(c) Assuming $I_{REF}=25 \, \mu A$, write an expression for and provide a numerical value for the small-signal gain from v_{in} to v_{out} with $V_O = 0 \, V$.

\[
I_{\text{ref}} = \frac{V_{\text{ref}}}{R_{\text{ref}}} = \frac{V_{\text{DD}} - V_{SD} - V_{eq} - V_{SS}}{V_{B}} \quad \Rightarrow \quad R_{\text{ref}} = 8.08 \, k\Omega
\]

\[
V_{GS} = V_{TM} + \sqrt{\frac{2I_{\text{ref}}}{k_n}} = 0.78 \, V
\]
(c) \[V_{G1G} = [V_{TP}] + \frac{2I_{ref}}{k_P} = 1.4 \text{V} \Rightarrow V_{OV6} = 1.4 [V_{TP}] = 0.7 \text{V} \]

\[\Rightarrow \text{M}_2 \text{ & } \text{M}_4 \text{ are also in linear region} \]

\[\text{A source voltages as } \text{M}_6 \]

\[R_d4 = \frac{M_P C_{ox} (W/L) (1V_{GSS} - [V_{TP} - V_{DS6}])}{2I_{ref} v_{sd4}} \]

\[= 8.695 \text{ k}\Omega \]

\[\frac{V_0}{V_{11}} = -\frac{1}{2} g_m R_d4 = 3.89 \text{ V/V} \]

\[g_m = 9 \text{ mS} = \sqrt{2 \mu_n C_{ox} (W/L) I_{ref}} = 8.94 \times 10^{-4} \text{ S} \]
Device Parameters:

NMOS:
- $V_{th} = 0.7\text{V}$
- $\mu_nC_{ox} = 200\mu\text{A}/\text{V}^2$
- $\lambda_n = 0.05 \text{ V}^{-1}$

PMOS:
- $V_{th} = -0.7\text{V}$
- $\mu_pC_{ox} = 100\mu\text{A}/\text{V}^2$
- $\lambda_p = 0.1 \text{ V}^{-1}$
Fall 2019 Final | Problem 4

Device Parameters:

NMOS:
- $V_{in0} = 0.7V$
- $\mu_0C_{ox} = 200 \mu A/V^2$
- $\lambda_n = 0.05 \text{ V}^{-1}$

PMOS:
- $V_{ip0} = -0.7V$
- $\mu_P C_{ox} = 100 \mu A/V^2$
- $\lambda_p = 0.1 \text{ V}^{-1}$

$V_{SS} = -1.5V$

$V_{DD} = 1.5V$

$V_A = 0.2V$

Diagram of the circuit with nodes labeled and device parameters.