I. Review nonlinear elements & linearization
II. Review semiconductor basics
III. Diode circuit examples
NONLINEAR ELEMENTS

- Analyzing circuits (i.e., solving systems of equations) is difficult if the governing equations are nonlinear
 - This usually refers to an current – voltage (I-V) characteristic
- We like all of our circuit elements to be linear
 - We approximate nonlinear elements as piecewise-linear

Resistor

- I_R vs. V_R

Capacitor

- I_C vs. V_C

Inductor

- I_L vs. V_L

Diode

- I_D vs. V_D

MOSFET

- I_D vs. V_{DS}
SEMICONDUCTOR TYPES

UNDOPED SILICON

-TYPE SILICON

-TYPE SILICON
PN Junctions

Diagram showing a pn junction with voltage applied, illustrating the depletion region, bound charges, and free charges. The potential barrier voltage V_0 is also shown.
PN JUNCTIONS | NO APPLIED VOLTAGE

OPEN-CIRCUIT PN JUNCTION

CARRIER CONCENTRATIONS

CHARGE DISTRIBUTION

BUILT-IN VOLTAGE, V_0
PN JUNCTIONS | WITH APPLIED VOLTAGE

- **Open-Circuit (Equilibrium)**
- **Reverse Bias**
- **Forward Bias**
Diodes

Ideal Diode

- Anode
- Cathode
- \(v < 0 \Rightarrow i = 0 \)
- \(i > 0 \Rightarrow v = 0 \)

Constant-Voltage-Drop Model

- Anode
- Cathode
- \(i > 0, v_D = 0.7 \text{ V} \)

Actual I-V Curve

- Reverse bias
- Forward bias

EE 105 | K. Peleaux & Q. Jin | Fall 2020
Assuming the diodes to be ideal, find the values of I & V in the circuit below.
Assuming the diodes to be ideal and the input triangle wave shown, sketch the output waveform.
Assuming the diodes to be ideal and the input triangle wave shown, sketch the output waveform.