
CS 61C: Great Ideas in Computer
Architecture (Machine Structures)

Lecture 30: GP-GPU Programming

Lecturer:
Alan Christopher

Summer 2014 -- Lecture #30

Overview

● GP-GPU: What and why
● OpenCL, CUDA, and

programming GPUs
● GPU Performance demo

Summer 2014 -- Lecture #30

A Quick Review: Classes of
Parallelism

● ILP:
● Run multiple instructions from one stream in

parallel (e.g. pipelining)

● TLP:
● Run multiple instruction streams

simultaneously (e.g. openMP)

● DLP:
● Run the same operation on multiple data at

the same time (e.g. SSE intrinsics)

GPUs are here

Summer 2014 -- Lecture #30

GPUs
● Hardware specialized for graphics calculations

● Originally developed to facilitate the use of CAD
programs

● Graphics calculations are extremely data parallel

● e.g. translate every vertex in a 3D model to the right

● Programmers found that that could rephrase some of
their problems as graphics manipulations and run them
on the GPU

● Incredibly burdensome for the programmer to use

● More usable these days – openCL, CUDA

Summer 2014 -- Lecture #30

CPU vs. GPU

● Throughput optimized

● Many, many threads
of execution

● Each thread executes
slowly

● Parallel code

● Lots of memory
bandwidth

● Latency optimized

● A couple threads of
execution

● Each thread executes
quickly

● Serial code

● Lots of caching

Summer 2014 -- Lecture #30

OpenCL and CUDA

● Extensions to C which allow for relatively easy
GPU programming

● CUDA is NVIDIA proprietary
● NVIDIA cards only

● OpenCL is opensource
● Can be used with NVIDA or ATI cards

● Intended for general heterogeneous computing

– Means you can use it with stuff like FPGAs

– Also means it's relatively clunky

● Similar tools, but different jargon

Summer 2014 -- Lecture #30

Kernels

● Kernels define the computation for one array
index

● The GPU runs the kernel on each index of a
specified range

● Similar functionality to map, but you get to know
the array index and the array value.

● Call the work at a given index a work-item, a
cuda thread, or a µthread.

● The entire range is called an index-space or grid.

Summer 2014 -- Lecture #30

OpenCL vvadd
/* C version. */

void vvadd(float *dst, float *a, float *b, unsigned n) {

for(int i = 0; i < n; i++)

dst[i] = a[i] + b[i]

}

/* openCL Kernel. */

__kernel void vvadd(__global float *dst, __global float *a,
 __global float *b, unsigned n) {

unsigned tid = get_global_id(0);

if (tid < n)

dst[tid] = a[tid] + b[tid];

}

Summer 2014 -- Lecture #30

Programmer's View of Execution

threadId 0

threadId 1

threadId 255

Create enough
work groups to

cover input
vector

(openCL calls
this ensemble
of work groups
an index space,

can be
3-dimensional
in openCL, 2

dimensional in
CUDA) Conditional (i<n)

turns off unused
threads in last

block

Local work
size

(programmer
can choose)

threadId 256

threadId 257

threadId 511

threadId m

threadId m+1

threadId n+e

Summer 2014 -- Lecture #30

Hardware Execution Model

GPU

● GPU is built from multiple parallel cores, each core contains a
multithreaded SIMD processor.

● CPU sends whole index-space over to GPU, which distributes work-groups
among cores (each work-group executes on one core)

● Programmer unaware of number of cores

● Notice that the GPU and CPU have different memory spaces. That'll be
important when we start considering which jobs are a good fit for GPUs,
and which jobs are a poor fit.

Core 0

Lane 0

Lane 1

Lane 15

Core 1

Lane 0

Lane 1

Lane 15

Core 15

Lane 0

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory

Summer 2014 -- Lecture #30

● GPUs use a SIMT model, where individual scalar instruction streams
for each work item are grouped together for SIMD execution on
hardware (Nvidia groups 32 CUDA threads into a warp. OpenCL
refers to them as wavefronts.)

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x
mul a
ld y
add
st y

Scalar
instruction

stream

SIMD execution across wavefront

“Single Instruction, Multiple Thread”

Summer 2014 -- Lecture #30

Teminology Summary

● Kernel: The function that is mapped across the input.

● Work-item: The basic unit of execution. Takes care of
one index. Also called a microthread or cuda thread.

● Work-group/Block: A group of work-items. Each
work-group is sent to one core in the GPU.

● Index-space/Grid: The range of indices over which the
kernel is applied.

● Wavefront/Warp: A group of microthreads (work-items)
scheduled to be SIMD executed with eachother.

Summer 2014 -- Lecture #30

Administrivia

● OH 10am-5pm in 611 Soda tomorrow
● Final on Friday

Summer 2014 -- Lecture #30

Conditionals in the SIMT Model
● Simple if-then-else are compiled into predicated execution,

equivalent to vector masking
● More complex control flow compiled into branches
● How to execute a vector of branches?

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7

tid=threadid
If (tid >= n) skip

Call func1
add
st y

Scalar
instruction

stream

SIMD execution across warp

skip:

Summer 2014 -- Lecture #30

Branch Divergence
● Hardware tracks which µthreads take or

don’t take branch
● If all go the same way, then keep going in

SIMD fashion
● If not, create mask vector indicating

taken/not-taken
● Keep executing not-taken path under

mask, push taken branch PC+mask onto a
hardware stack and execute later

● When can execution of µthreads in warp
reconverge?

Summer 2014 -- Lecture #30

Warps (wavefronts) are
multithreaded on a single core

● One warp of 32 µthreads is a single
thread in the hardware

● Multiple warp threads are
interleaved in execution on a
single core to hide latencies
(memory and functional unit)

● A single thread block can contain
multiple warps (up to 512 µT max
in CUDA), all mapped to single core

● Can have multiple blocks executing
on one core

[Nvidia, 2010]

Summer 2014 -- Lecture #30

OpenCL Memory Model

● Global – read and write by all
work-items and work-groups

● Constant – read-only by
work-items; read and write by
host

● Local – used for data sharing;
read/write by work-items in
the same work group

● Private – only accessible to
one work-item

Summer 2014 -- Lecture #30

SIMT
● Illusion of many independent threads
● But for efficiency, programmer must try

and keep µthreads aligned in a SIMD
fashion

● Try to do unit-stride loads and store so
memory coalescing kicks in

● Avoid branch divergence so most
instruction slots execute useful work
and are not masked off

Summer 2014 -- Lecture #30

VVADD
/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++)

dst[i] = a[i] + b[i]
}

/* openCL Kernel. */
__kernel void vvadd(__global float *dst, __global float *a,
 __global float *b, unsigned n) {

unsigned tid = get_global_id(0);
if (tid < n)

dst[tid] = a[tid] + b[tid];
}

A: CPU faster
B: GPU faster

Summer 2014 -- Lecture #30

VVADD

/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++)

dst[i] = a[i] + b[i]
}

● Only 1 flop per three memory accesses =>
 memory bound calculation.

●“A many core processor ≡ A device for turning
 a compute bound problem into a memory
 bound problem” – Kathy Yelick

Summer 2014 -- Lecture #30

VECTOR_COP
/* C version. */
void vector_cop(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++) {

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)

dst[i] += a[i]*2*b[i] – a[i]*a[i] – b[i]*b[i];
}

}

/* OpenCL kernel. */
__kernel void vector_cop(__global float *dst, __global float *a,
 __global float *b, unsigned n) {

unsigned i = get_global_id(0);
if (tid < n) {

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)

dst[i] += a[i]*2*b[i] – a[i]*a[i] – b[i]*b[i];
}

}

A: CPU faster
B: GPU faster

Summer 2014 -- Lecture #30

GP-GPU in the future
● High-end desktops have separate GPU chip, but trend

towards integrating GPU on same die as CPU (already in
laptops, tablets and smartphones)

● Advantage is shared memory with CPU, no need to transfer data
● Disadvantage is reduced memory bandwidth compared to dedicated

smaller-capacity specialized memory system
– Graphics DRAM (GDDR) versus regular DRAM (DDR3)

● Will GP-GPU survive? Or will improvements in CPU DLP
make GP-GPU redundant?

● On same die, CPU and GPU should have same memory bandwidth
● GPU might have more FLOPS as needed for graphics anyway

Summer 2014 -- Lecture #30

Acknowledgements

● These slides contain materials developed and
copryright by

● Krste Asanovic (UCB)

● AMD

● codeproject.com

Summer 2014 -- Lecture #30

And in conclusion…

● GPUs thrive when

● The calculation is data parallel
● The calculation is CPU-bound
● The calculation is large

● CPUs thrive when
● The calculation is largely serial
● The calculation is small
● The programmer is lazy

Summer 2014 -- Lecture #30

Bonus

● OpenCL source code for vvadd and vector_cop
demos available at

http://www-inst.eecs.berkeley.edu/~cs61c/sp13/lec/39/demo.tar.gz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Administrivia
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	And in conclusion…
	Slide 25

