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Overview

● GP-GPU: What and why
● OpenCL, CUDA, and 

programming GPUs
● GPU Performance demo
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A Quick Review: Classes of 
Parallelism

● ILP:
● Run multiple instructions from one stream in 

parallel (e.g. pipelining)

● TLP:
● Run multiple instruction streams 

simultaneously (e.g. openMP)

● DLP:
● Run the same operation on multiple data at 

the same time (e.g. SSE intrinsics)

GPUs are here
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GPUs
● Hardware specialized for graphics calculations

● Originally developed to facilitate the use of CAD 
programs

● Graphics calculations are extremely data parallel

● e.g. translate every vertex in a 3D model to the right

● Programmers found that that could rephrase some of 
their problems as graphics manipulations and run them 
on the GPU

● Incredibly burdensome for the programmer to use

● More usable these days – openCL, CUDA
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CPU      vs.     GPU

● Throughput optimized

● Many, many threads 
of execution

● Each thread executes 
slowly

● Parallel code

● Lots of memory 
bandwidth

● Latency optimized

● A couple threads of 
execution

● Each thread executes 
quickly

● Serial code

● Lots of caching
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OpenCL and CUDA

● Extensions to C which allow for relatively easy 
GPU programming

● CUDA is NVIDIA proprietary
● NVIDIA cards only

● OpenCL is opensource
● Can be used with NVIDA or ATI cards

● Intended for general heterogeneous computing

– Means you can use it with stuff like FPGAs

– Also means it's relatively clunky

● Similar tools, but different jargon 
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Kernels

● Kernels define the computation for one array 
index

● The GPU runs the kernel on each index of a 
specified range

● Similar functionality to map, but you get to know 
the array index and the array value.

● Call the work at a given index a work-item, a 
cuda thread, or a µthread.

● The entire range is called an index-space or grid.
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OpenCL vvadd
/* C version. */

void vvadd(float *dst, float *a, float *b, unsigned n) {

for(int i = 0; i < n; i++)  

dst[i] = a[i] + b[i] 

}

/* openCL Kernel. */

__kernel void vvadd(__global float *dst, __global float *a,     
                    __global float *b, unsigned n) {

unsigned tid = get_global_id(0);

if (tid < n) 

dst[tid] = a[tid] + b[tid];

}
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Programmer's View of Execution

threadId 0

threadId 1

threadId 255

Create enough 
work groups to 

cover input 
vector

(openCL calls 
this ensemble 
of work groups 
an index space, 

can be 
3-dimensional 
in openCL, 2 

dimensional in 
CUDA) Conditional (i<n) 

turns off unused 
threads in last 

block

Local work 
size 

(programmer 
can choose)

 

threadId 256

threadId 257

threadId 511

threadId m

threadId m+1

threadId n+e
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Hardware Execution Model

GPU

● GPU is built from multiple parallel cores, each core contains a 
multithreaded SIMD processor.

● CPU sends whole index-space over to GPU, which distributes work-groups 
among cores (each work-group executes on one core)

● Programmer unaware of number of cores

● Notice that the GPU and CPU have different memory spaces. That'll be 
important when we start considering which jobs are a good fit for GPUs, 
and which jobs are a poor fit.

Core 0

Lane 0 

Lane 1

Lane 15

Core 1

Lane 0 

Lane 1

Lane 15

Core 15

Lane 0 

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory
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● GPUs use a SIMT model, where individual scalar instruction streams 
for each work item are grouped together for SIMD execution on 
hardware (Nvidia groups 32 CUDA threads into a warp. OpenCL 
refers to them as wavefronts.)

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x
mul a
ld y
add
st y

Scalar 
instruction 

stream

SIMD execution across wavefront

“Single Instruction, Multiple Thread”
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Teminology Summary

● Kernel: The function that is mapped across the input.

● Work-item: The basic unit of execution. Takes care of 
one index. Also called a microthread or cuda thread.

● Work-group/Block: A group of work-items. Each 
work-group is sent to one core in the GPU.

● Index-space/Grid: The range of indices over which the 
kernel is applied.

● Wavefront/Warp: A group of microthreads (work-items) 
scheduled to be SIMD executed with eachother.
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Administrivia

● OH 10am-5pm in 611 Soda tomorrow
● Final on Friday
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Conditionals in the SIMT Model
● Simple if-then-else are compiled into predicated execution, 

equivalent to vector masking
● More complex control flow compiled into branches
● How to execute a vector of branches?

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7

tid=threadid
If (tid >= n) skip

Call func1
add
st y

Scalar 
instruction 

stream

SIMD execution across warp

skip:
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Branch Divergence
● Hardware tracks which µthreads take or 

don’t take branch
● If all go the same way, then keep going in 

SIMD fashion
● If not, create mask vector indicating 

taken/not-taken
● Keep executing not-taken path under 

mask, push taken branch PC+mask onto a 
hardware stack and execute later

● When can execution of µthreads in warp 
reconverge?
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Warps (wavefronts) are 
multithreaded on a single core

● One warp of 32 µthreads is a single 
thread in the hardware

● Multiple warp threads are 
interleaved in  execution on a 
single core to hide latencies 
(memory and functional unit)

● A single thread block can contain 
multiple warps (up to 512 µT max 
in CUDA), all mapped to single core

● Can have multiple blocks executing 
on one core

[Nvidia, 2010]
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OpenCL Memory Model

● Global – read and write by all 
work-items and work-groups

● Constant – read-only by 
work-items; read and write by 
host

● Local – used for data sharing; 
read/write by work-items in 
the same work group

● Private – only accessible to 
one work-item
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SIMT
● Illusion of many independent threads
● But for efficiency, programmer must try 

and keep µthreads aligned in a SIMD 
fashion

● Try to do unit-stride loads and store so 
memory coalescing kicks in

● Avoid branch divergence so most 
instruction slots execute useful work 
and are not masked off
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VVADD
/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++)  

dst[i] = a[i] + b[i] 
}

/* openCL Kernel. */
__kernel void vvadd(__global float *dst, __global float *a,             
                    __global float *b, unsigned n) {

unsigned tid = get_global_id(0);
if (tid < n) 

dst[tid] = a[tid] + b[tid];
}

A: CPU faster
B: GPU faster
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VVADD

/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++)  

dst[i] = a[i] + b[i] 
}

● Only 1 flop per three memory accesses =>     
   memory bound calculation.

●“A many core processor ≡ A device for turning 
  a compute bound problem into a memory       
  bound problem” – Kathy Yelick
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VECTOR_COP
/* C version. */
void vector_cop(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++) {  

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)

dst[i] += a[i]*2*b[i] – a[i]*a[i] – b[i]*b[i]; 
}

}

/* OpenCL kernel. */
__kernel void vector_cop(__global float *dst, __global float *a,
                         __global float *b, unsigned n) {

unsigned i = get_global_id(0);
if (tid < n) {

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)

dst[i] += a[i]*2*b[i] – a[i]*a[i] – b[i]*b[i]; 
}

}

A: CPU faster
B: GPU faster
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GP-GPU in the future
● High-end desktops have separate GPU chip, but trend 

towards integrating GPU on same die as CPU (already in 
laptops, tablets and smartphones)

● Advantage is shared memory with CPU, no need to transfer data
● Disadvantage is reduced memory bandwidth compared to dedicated 

smaller-capacity specialized memory system
– Graphics DRAM (GDDR) versus regular DRAM (DDR3)

● Will GP-GPU survive? Or will improvements in CPU DLP 
make GP-GPU redundant?

● On same die, CPU and GPU should have same memory bandwidth
● GPU might have more FLOPS as needed for graphics anyway
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And in conclusion…
 
● GPUs thrive when

● The calculation is data parallel
● The calculation is CPU-bound
● The calculation is large

● CPUs thrive when
● The calculation is largely serial
● The calculation is small
● The programmer is lazy 
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Bonus

● OpenCL source code for vvadd and vector_cop 
demos available at 

http://www-inst.eecs.berkeley.edu/~cs61c/sp13/lec/39/demo.tar.gz
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