
 

 

CS61C Summer 2014 Discussion 9 Notes 
  
Written by Andrew Luo and CS61C course staff 

Power 
 
The primary source of power dissipation for CMOS technology is dynamic power, the power consumed during 

transistor switching: 

Power = Capacitive Load × Voltage2 × Switching Frequency = C × V2 × f 

Parallelism 
 
Software can be classified as sequential, where a single computational process is carried out, or concurrent, 

where collections of interacting computational processes are executed.  Hardware can be classified as serial 

or parallel, depending on whether one or more computations can be carried out simultaneously.  These 

software and hardware classifications are independent of each other (eg, a sequential process can run on 

hardware that may execute multiple instructions at a time).   

Job-level (process-level) parallelism, where independent programs are run on different processors can take 

advantage of multiprocessors, computers with more than one processor.  In particular, today we use the 

term multicore microprocessor in reference to multiprocessors with multiple processors (cores) on the same 

IC (chip).   

Thread Level Parallelism (TLP): Executing different processes (threads) of the same program on different 

processors.  Threads can communicate with each other.  

Instruction Level Parallelism (ILP): Performing different instructions in a program simultaneously.  

Data Level Parallelism (DLP): Operating on independent data simultaneously.  

Flynn’s Taxonomy 
Flynn’s taxonomy is a classification of computer architectures into Single/Multiple Instruction  and 
Single/Multiple Data stream.  The following image is taken from Wikipedia:  
 

  
 
So far we have been assuming use of SISD, or just a normal uniprocessor machine.  MISD is generally 

unused, so the main areas of interest are SIMD and MIMD.



 

 

Amdahl’s Law 
In general terms, Amdahl’s Law states (quoting P&H) that “the performance enhancement possible with a 

given improvement is limited by the amount that the improved feature is used.”  Let “exec time” stand for 

execution time:  

exec time after improvement =
exec time affected by improvement

amount of improvement
+ exec time unaffected 

As stated above, it’s clear to see that this supports the common design principle of making the common case 

fast. 

Restated in terms of parallelism, the potential speedup from parallelization is limited by the amount a 

program can be parallelized and the level of parallelization (here amount of improvement = number of  

processors).  Let   be the fraction of the original execution time affected by the improvement (% of process 

that can be parallelized) and   be the number of processors.  Then the amount of speed up going from 1 to N 

processors is given by: 

𝑆(𝐹, 𝑁) =
1

(1 − 𝐹) +
𝐹
𝑁

 

This equation has the following limits:   

lim
𝐹→1

𝑆(𝐹, 𝑁) = 𝑁 
lim

𝐹→∞
𝑆(𝐹, 𝑁) =

1

1 − 𝐹
 

SIMD and SSE 
SSE, or Streaming SIMD Instructions, is an instruction set extension developed by Intel that SIMD instructions 

for floating point as well as integer data types (there was actually MMX before SSE, but it was much less 

popular).  SIMD instruction extensions and SSE have been expanded throughout the years, with the original 

SSE (1999), SSE2 (2001), SSE3 (2004), SSSE3 (2006), SSE4 (2006), AES-NI (2008), AVX (2008), FMA (2013), BMI 

(2012).  SSE introduced 8 new 128-bit registers that allow the manipulation of up to 4 32-bit (DWORD1) values, 

2 64-bit (QWORD) values, 8 16-bit (WORD) values, or 16 8-bit (BYTE) values in 1 instruction. 

Example: 

float a[4], b[4], c[4]; //assume these are initialized 
 
for (size_t i = 0; i < 4; i++) 
{ 
     c[i] = a[i] + b[i]; //Non-SSE 
} 

__declspec(align(16)) float a[4]; 
__declspec(align(16)) float b[4]; 
__declspec(align(16)) float c[4]; 
 
_mm_store_ps(c, _mm_add_ps(_mm_load_ps(a), 
_mm_load_ps(b))); //SSE 

OpenMP 
OpenMP is a cross-platform compiler extension to make writing multithreaded programs easier.  Before 

OpenMP, writing multithreaded code generally required using platform-specific APIs (CreateThread on 

Windows or POSIX/pthreads on Linux).  OpenMP directives are used to specify the start/end of a “parallel 

section” (where threads should be forked/joined). 

Example: 

#pragma openmp parallel for //assume a, b, and c are declared and initialized as in the example above 
for (size_t i = 0; i < 4; i++) c[i] = a[i] + b[i];  

 

                                                             
1 Note that this is different from a MIPS word – a MIPS word is 32-bits whereas an x86 word is historically 16-bits. 


