CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Thread Level Parallelism

Instructors:
Randy H. Katz
David A. Patterson

http://inst.eecs.Berkeley.edu/~cs61c/fal0

10/15/10 Fall 2010 - Lecture #19

Agenda

* Review

* Data Races and Synchronization

* Hardware Support for Multithreading
* Atomic Operations in MIPS

* Administrivia

* Technology Break

* OpenMP with Examples

* Summary

10/15/10 Fall 2010 - Lecture #19 2

Review

* Sequential software is slow software
— SIMD and MIMD only path to higher performance

* Multiprocessor (Multicore) uses Shared
Memory (single address space)

* Cache coherency implements shared memory
even with multiple copies in multiple caches
— False sharing a concern

* Thread: unit of execution that OS schedules
— Within one core + across multiple cores

10/15/10 Fall 2010 - Lecture #19

Review: Potential Parallel Performance
(assuming SW can use it)

2003 MIMD2 sSIMD 128 256 mivbo 4

2005 *2/ 4 2X/ 128 512 *SIMD 8

2007 2¥yrs g 4yrs 128 768 12
009 8 128 1024 16
2011 10 256 2560 40
2013 12 256 3072 48
2015 [25%14 8X 512 7168 |20x112
2017 16 512 8192 128
2019 18 1024 18432 288

2021 20 1024 20480 320

10/15/10 Fall 2010 - Lecture #19

10/15/10

Lock and Unlock Synchronization

* Lock used to create region (“critical section”)
where only 1 processor can operate

* Given shared memory, use memory location as
synchronization point: “/lock” or “semaphore”

¢ Processors read lock to see if must wait, or OK
to go into critical section (and set to locked)

* 0=>lockis free / open / unlocked / lock off
e 1=>lock is taken / closed / locked / lock on

10/15/10 Fall 2010 - Lecture #19

Peer Instruction: What Happens?

addiu St1,Szero, 1 : t1 = Locked value
Tryagain: Iw $t0, lock($s0) ; load lock

beq St0,5t1, Trygain ; loopif 1
Getlock: sw St1,lock($s0) ; Lock must be 0?

I. Implements lock correctly

Il. Infinite Loop, since no change to lock before beq

Ill. Doesn’t work because another core could read lock in
memory before sw changes it to 1, go to critical section

IV. Doesn’t work because OS could schedule another
thread on this core between lw and sw, and the other
thread could go into critical section

A)(red) IonIY
B)(orange) Il on

C)(green) Il only
D)(yellow) IV only

E)(burgundy) lll and IV

Hardware Synchronization

* Hardware support required to prevent interloper
(either thread on other core or thread on same
core) from changing the value
— Atomic read/write memory operation

— No other access to the location allowed between the
read and write

* Could be a single instruction
— E.g., atomic swap of register <> memory

— But MIPS does have instructions that both read and
write memory

* Or an pair of instructions that acts atomically

10/15/10 Fall 2010 -- Lecture #19

Atomic Operation in MIPS

* Load linked: 11 rt, offset(rs)
* Store conditional: sc rt, offset(rs)
— Succeeds if location not changed since the 11
* Returns 1in rt (clobbers register value being stored)
— Fails if location is changed
* Returns 0 in rt (clobbers register value being stored)
* Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value
11 $t1,0($sD) ;Toad Tinked
sc $t0,0($sD) ;store conditional
beq $t0,$zero,try ;branch store fails
add $s4,%$zero,$tl ;put Toad value in $s4

B8 DHYID-- Lecture #19

10/15/10

Synchronization in MIPS

* Example: Check for lock using atomic sequence
Try: addiu $t0,$zero,1 ;copy locked value

11 $t1,0($sD) ;Toad Tinked

bne $tl1,%$zero,try ;loop if lock was 1

sc $t0,0($s1) ;==0, store conditional

beq $t0,%$zero,try ;branch store fails,
;try again

« Store conditional: sc rt, offset(rs)
— Succeeds if location not changed since the 11
* Returns 1in rt (clobbers register value being stored)
— Fails if location is changed

soiz- e RELUNS 0 in rt (clobbers register value being stored)

Test and Set —ldm.,:“

Test-and-set achieves synchronization where
only 1 processor is allowed to access a critical
section. In general, this technique involves
using a variable called the semaphore and
assigning values to this variable for the “lock- Try to own & lock
off” or “lock-on” state. Semaphore can be semaphore
interpreted as a lock to some critical section.

Each processor checks if the lock is off; if so, it No
tries to lock it by modifying the variable @

Unlocked?

appropriately. Once a processor gets the lock, Yes
itis then allowed to modify restricted data or

access the critical section. After it is done, it Execute erifical section
gets out of the critical section and modifies the *

semaphore to the “lock-off” state so that other

. Unlock he
progessors can get a chance to.accessiit. Semaphore

Multithreading vs. Multicore

* Basic idea: Processor resources are expensive and
should not be left idle

* Long memory latency to memory on cache miss?

* Hardware switches threads to bring in other
useful work while waiting for cache miss

* Cost of thread context switch must be much less
than cache miss latency

* Putin redundant hardware so don’t have to save
context on every thread switch:
— PC, Registers, L1 caches?

 Attractive for apps with abundant TLP
— Commercial multi-user workloads

10/15/10 Fall 2010 - Lecture #19 11

Ultrasparc T1 Die Photo

: ey Reuse FPUs, L2 caches

« 8 64-bit Multithreaded
SPARC Cores

« Shared 3 MB, 12-way 64B

line writeback L2 Cache

« 16 KB, 4-way 32B line

ICache per Core

« 8 KB, 4-way 16B line write-

through DCache per Core

+ 4 144-bit DDR-2 channels

«3.2 GB/sec JBUS IO

18|
L

His
i
i

i
gt

Technology:

« TI's 90nm CMOS Process
+ 9LM Cu Interconnect

« 63 Watts @ 1.2GHz/1.2V
« Die Size: 379mm?

« 279M Transistors

« Flip-chip ceramic LGA

10/15/10

Machines in 61C Lab

* /usr/sbin/sysctl -a | grep hw\.

hw.model = MacPro4,1

hw.physicalcpu: 8
hw.logicalcpu: 16

hw.cpufrequency =
2,260,000,000

hw.physmem =
2,147,483,648

hw.cachelinesize = 64
hw.l1licachesize: 32,768
hw.l1dcachesize: 32,768
hw.l2cachesize: 262,144
hw.I3cachesize: 8,388,608

Therefore, should try up
to 16 threads to see if
performance gain even
though only 8 cores

© Shen, Lipast 13

Agenda

* Administrivia

* Technology Break

* OpenMP with Examples
* Summary

10/15/10 Fall 2010 - Lecture #19 1

Administrivia

* Midterm answers and grading ruberic online

* Turn in your written regrade petitions with
your exam to your TA by next Tuesday Oct 19

* Make sure all grades are correct but Project 4,

Final by December 1

* Final Exam 8-11AM (TBD) Monday Dec 13

10/15/10 Fall 2010 - Lecture #19

61C In The News

* “Intel CEO Tells Employees That Mobile Effort Will Be
'Marathon’” Bloomberg News/SF Chron, 10/15/10

Intel Corp. Chief Executive Officer Paul Otellini, working to
get his company's chips into tablets and mobile phones,
told employees that the effort will be a "marathon, not a
sprint."

"The big question on many people's minds is how will we
respond to new computing categories where we currently
have little presence, specifically tablets and smartphones,"
he said yesterday in an e-mail to Intel workers obtained by
Bloomberg News. "Winning an architectural contest can
take time.”

10/15/10 Fall 2010 - Lecture #19 16

10/15/10

OpenMP

* OpenMP is an APl used for multi-threaded,
shared memory parallelism
— Compiler Directives
— Runtime Library Routines
— Environment Variables
¢ Portable, Standardized
¢ Works for C, C++, Fortran

* gcc —fopenmp file.c

10/15/10 Fall 2010 - Lecture #19

OpenMP Extends C with Pragmas

Pragmas are a mechanism C provides for
language extensions

Commonly implemented pragmas:

structure packing, symbol aliasing, floating point
exception modes

Good mechanism for OpenMP because compilers
that don't recognize a pragma are supposed to
ignore them

— Runs on sequential computer even with embedded
pragmas

10/15/10 Fall 2010 - Lecture #19 18

Fork/Join Parallelism

 Start out executing the program with one
master thread

¢ Master thread forks worker threads

* Worker threads die or suspend at end of
parallel code

ZHOGg
ZHOY

master
thread

{ parallel region } { parallel region}
Image courtesy of http://www.linl.gov/computing/tutorials/openMp/

10/15/10 Fall 2010 - Lecture #19

Thread Creation

How many threads will OpenMP create?

Defined by OMP_NUM_THREADS environment

variable

Set this variable to the maximum number of
threads you want OpenMP to use

Presumably = number cores in HW running
program

10/15/10 Fall 2010 - Lecture #19

10/15/10

OMP_NUM_THREADS

* Shell command to set number threads:

export OMP NUM THREADS=x

* Shell command check number threads:

echo $OMP_NUM THREADS

* OpenMP intrinsic to get number of threads:

int num th = omp get num threads();
* OpenMP intrinsic to get Thread ID number:

int th ID = omp get thread num();

10/15/10 Fall 2010 - Lecture #19 21

Invoking Parallel Threads

H#pragma omp parallel

{

int ID = omp_get_thread_num();
foo(ID);
}

* Each thread executes a copy of the within the
structured structured block

10/15/10 Fall 2010 - Lecture #19

OpenMP Critical Section

float res;

#pragma omp parallel

{ float B;inti, id, nthrds;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();

for(i=id;i<niters;i+nthrds){ Thr?ads wait
[their turn -
B = big_job(i); onlyone ata
#pragma omp critical —_— | time calls
consume (B, res); consume()
}
}

10/15/10 Fall 2010 - Lecture #19 23

Shared vs. Private Variables

* OpenMP default is shared variables

* To make private, need to declare with pragma
#pragma omp parallel private (x)

* Now, some examples in OpenMP

10/15/10 Fall 2010 - Lecture #19

10/15/10

Calculating
Numerical Integration

Mathematically, we know that:

1
4.0
(1) dx=TC

We can approximate the
integral as a sum of
rectangles:

| nd
o

<
%
+
<
S
<
I
=
X
x
fr

N
2 Foax s 7
i=0
Where each rectangle has
width Ax and height F(x;) at
the middle of interval i.

Sequential Calculation of min C

#include <stdio.h>/* Serial Code */
static long num_steps = 100000; double step;
void main ()
{ inti; double x, pi, sum=0.0;
step = 1.0/(double) num_steps;
for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
pi = step/num_steps; printf ("pi = %6.12f\n", pi);

10/15/10 Fall 2010 - Lecture #19

OpenMP Version (with bug)

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ inti; double x, pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
#tpragma omp parallel private (x)
{ intid = omp_get_thread_num();
for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS) {
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for(i=0, pi=0.0; i<NUM_THREADS; i++)
pi +=sumli] ;
printf ("pi = %6.12f\n", pi / num_steps);
}

10/15/10 Fall 2010 - Lecture #19

OpenMP Version 2 (with bug)

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ inti; double x, sum, pi=0.0;
step = 1.0/(double) num_steps;
#tpragma omp parallel private (x, sum)
{ intid = omp_get_thread_num();
for (i=id,sum=0.0; i< num_steps; i=i+NUM_THREADS){
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);
}
#pragma omp critical
pi +=sum;
}
printf ("pi = %6.12f \n”,pi/num_steps);
}

10/15/10 Fall 2010 - Lecture #19

10/15/10

Simple Parallelization

for (i=0; i<max; 1i++) zero[i] = 0;

— For loop must have canonical shape for OpenMP
to parallelize it

* Necessary for run-time system to determine loop
iterations

— No premature exits from the loop allowed
* i.e., No break, return, exit, goto statements

10/15/10 Fall 2010 - Lecture #19

The parallel for pragma

#pragma omp parallel for

for (i=0; i<max; 1++) zerol[i] = 0;

* Master thread creates additional threads, each with
a separate execution context

* All variables declared outside for loop are shared by
default, except for loop index which is private per
thread (Why?)

* Implicit synchronization at end of for loop

* Divide index regions sequentially per thread
— Thread 0 gets 0, 1, ..., (max/n)-1;

— Thread 1 gets max/n, max/n+1, ..., 2¥(max/n)-1
— Why?

10/15/10 Fall 2010 - Lecture #19

OpenMP Reduction

* Reduction: specifies that 1 or more variables
that are private to each thread are subject of
reduction operation at end of parallel region:
reduction(operation:var) where
— Operation: operator to perform on the variables

(var) at the end of the parallel region
— Var: One or more variables on which to perform
scalar reduction.

#pragma omp for reduction(+ : nSum)
for (i = START ; i <= END ; ++i)

nSum +=i;

10/15/10 Fall 2010 - Lecture #19

OpenMP Version 3

#include <omp.h>
#tinclude <stdio.h>
/static long num_steps = 100000;
double step;
void main ()
{ inti; double x, pi, sum=0.0;
step = 1.0/(double) num_steps;
#tpragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
pi = sum / num_steps;
printf ("pi = %6.12f\n", pi);
1

10/15/10 Fall 2010 - Lecture #19

10/15/10

Summary

Synchronization requires atomic operations
— Via Load Linked and Store Conditional in MIPS

Hardware multithreading to get more
utilization from processor

OpenMP is a simple pragma extension to C

— Threads, Parallel for, private, critical sections, ...

Data races lead to subtle parallel bugs
— Beware private variables vs. shared variables

Fall 2010 - Lecture #19

10/15/10

