CS 61C: Great Ideas in Computer
Architecture (Machine Structures)

Instructors:
Randy H. Katz
David A. Patterson

http://inst.eecs.Berkeley.edu/~cs61c/fal0

10/4/10

Agenda

* Cache Sizing/Hits and Misses
* Administrivia

* Technology Break

* Cache Performance

Agenda

Cache Sizing/Hits and Misses

Cache Field Sizes

* Number of bits in a cache includes both the storage for
data and for the tags
— 32-bit byte address

— For a direct mapped cache with 2" blocks, n bits are used
for the index

— For a block size of 2™ words (2™ bytes), m bits are used to
address the word within the block and 2 bits are used to
address the byte within the word

¢ What is the size of the tag field?
* Total number of bits in a direct-mapped cache is then

— 2" x (block size + tag field size + valid field size)

Peer Instruction

How many total bits are required for a direct
mapped cache with 16KB of data and 4-word
blocks assuming a 32-bit address?

— A: 128K bits

— B: 19K bits

— C: 147K bits

— D: 148K bits

— E: 129K bits

— F: 18K bits

Handling Cache Hits

* Read hits (IS and DS)
— Hits are good in helping us go fast
— Misses are bad/slow us down

* Write hits (DS only)
— Require cache and memory to be consistent
* Write-through: Always write the data into the cache block and the
next level in the memory hierarchy
* Writes run at the speed of next level in memory hierarchy — so slow! —
or can use a write buffer and stall only if the write buffer is full
— Allow cache and memory to be inconsistent
* Write-back: Write the data only into the cache block (cache block
written back to next level in memory hierarchy when it is “evicted”)

* Need a dirty bit for each data cache block to tell if it needs to be
written back to memory when evicted — can use a write buffer to help
“buffer” write-backs of dirty blocks

10/4/10 Fall 2010 - Lecture #16

Sources of Cache Misses

Compulsory (cold start or process migration, first reference):

— First access to a block, “cold” fact of life, not a whole lot you can do
about it. If you are going to run “millions” of instruction,
compulsory misses are insignificant

— Solution: increase block size (increases miss penalty; very large
blocks could increase miss rate)

Capacity:

— Cache cannot contain all blocks accessed by the program

— Solution: increase cache size (may increase access time)
Conflict (collision):

— Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size

— Solution 2: increase associativity (stay tuned!)
(may increase access time)

112010 - Lecture #16 7

10/4/10

Handling Cache Misses
(Single Word Blocks)

* Read misses (I$ and DS)

— Stall the pipeline, fetch the block from the next level in the memory
hierarchy, install it in the cache and send requested word to processor,
then let pipeline resume

* Write misses (DS only)

— Stall the pipeline, fetch the block from next level in the memory
hierarchy, install it in cache (may involve evicting a dirty block if using
write-back), write the word from processor to cache, then let pipeline
resume

or

— Write allocate: just write word into the cache updating both tag and
data; no need to check for cache hit, no need to stall

or

— No-write allocate: skip the cache write (but must invalidate cache
block since it will now hold stale data) and just write the word to write
buffer (and eventually to the next memory level); no need to stall if
write buffer isn’t full

10/4/10 Fall 2010 - Lec

Handling Cache Misses
(Multiword Block Considerations)

* Read misses (I$ and DS)

— Processed the same as for single word blocks — a miss returns
the entire block from memory
— Miss penalty grows as block size grows
* Early restart: processor resumes execution as soon as the requested
word of the block is returned
* Requested word first: requested word is transferred from the memory
to the cache (and processor) first
— Nonblocking cache — allows the processor to continue to access
cache while cache is handling an earlier miss

* Write misses (DS)

10/4/1¢

— If using write allocate must first fetch block from memory and
then write word to block (or could end up with a “garbled” block
in the cache.

— E.g., for 4 word blocks, a new tag, one word of data from the
new block, and three words of data from the old block)

0 112010 - Lecture #16

Agenda

* Administrivia

10/4/10 Fall 2010 - Lec

TA Exam Review Tonight!, 100 GPB 6-8 PM
NO lecture next Wednesday, 6 October
Exam, 6-9 PM, 1 Pimentel

Everything covered through today

Key topics:

— C programming (pointers, arrays, structures)
— Mapping C into assembly/MIPS instructions
— General technology trends

— Components of a computer

— Request and data level parallelism

— Quantitative performance and benchmarking
— Memory Hierarchy/Caches

0

Midterm!

Agenda

* Technology Break

Fall 2010 - Lecture #16 12

Agenda

¢ Cache Performance

10/4/10

Measuring Cache Performance

« Assuming cache hit costs are included as part of the normal CPU execution
cycle, then
CPU time = IC x CPI x CC
= 1C x (CPlig,, + Memory-stall cycles) x CC

Pl
« Memory-stall cycles come from cache misses (a sum of
read-stalls and write-stalls)
Read-stall cycles = reads/program x read miss rate x read miss penalty
Write-stall cycles = (writes/program x write miss rate x write miss penalty)
+ write buffer stalls
« For write-through caches, we can simplify this to

Memory-stall cycles = accesses/program x miss rate x miss penalty

10/4/10 Fall 2010 - Lecture #16 1

Impacts of Cache Performance

Relative $ penalty increases as processor performance
improves (faster clock rate and/or lower CPI)

— Memory speed unlikely to improve as fast as processor cycle
time. When calculating CPl,,, cache miss penalty is measured
in processor clock cycles needed to handle a miss

— Lower the CPly,,, more pronounced impact of stalls

* Processor with a CPl,y, of 2, a 100 cycle miss penalty, 36%
load/store instr’s, and 2% 1S and 4% DS miss rates
— Memory-stall cycles = 2% x 100 + 36% x 4% x 100 = 3.44
- So CPl,, = 2+3.44=5.44
— More than twice the CPlideal !
* What if the CPl 4, is reduced to 1? 0.5? 0.25?
What if the D$ miss rate went up by 1%? 2%?
* What if the processor clock rate is doubled/cycle halved
(miss penalty doubled)?

112010 - Lecture #16

Average Memory Access Time (AMAT)

« Larger $ has longer access time. Increase in hit time will
likely add another stage to the pipeline. At some point,
increase in hit time for a larger cache will overcome the
improvement in hit rate, yielding a decrease in performance.

* Average Memory Access Time (AMAT) is the average to
access memory considering both hits and misses

AMAT = Time for a hit + Miss rate x Miss penalty

* What is the AMAT for a processor with a 20 psec clock, a
miss penalty of 50 clock cycles, a miss rate of 0.02 misses
per instruction and a cache access time of 1 clock cycle?

1+0.02x50=2

Reducing Cache Miss Rates

* Use multiple $ levels

* With advancing technology, have more room on die for
bigger L1 caches or for second level cache — normally a
unified L2 cache (i.e., it holds both instructions and
data,) and in some cases even a unified L3 cache

* E.g., CPliy, of 2,

100 cycle miss penalty (to main memory),

25 cycle miss penalty (to UL2S),

36% load/stores,

a 2% (4%) L1 1S (DS) miss rate,

add a 0.5% UL2S miss rate

— CPI = 2 + .02x25 + .36x.04x25 + .005x100 +
.36x.005x100

= 3.54 (vs. 5.44 with no L29)

stalls

Multilevel Cache Design
Considerations

 Different design considerations for L1$ and L2$
— Primary $ focuses on minimizing hit time for shorter clock
cycle: Smaller $ with smaller block sizes
— Secondary $(s) focus on reducing miss rate to reduce penalty
of long main memory access times: Larger $
with larger block sizes/higher levels of associativity
* Miss penalty of L1S is significantly reduced by presence
of L2$, so can be smaller/faster but with higher miss rate
* For the L2S, hit time is less important than miss rate
— L2$ hit time determines L1S$’s miss penalty
— L2$ local miss rate >> than the global miss rate

Improving Cache Performance
(1 of 3)

0. Reduce the time to hit in the cache
— Smaller cache
— Direct mapped cache
— Smaller blocks
— For writes
* No write allocate — no “hit” on cache, just write to write buffer

* Write allocate — to avoid two cycles (first check for hit, then write)
pipeline writes via a delayed write buffer to cache

1. Reduce the miss rate
— Bigger cache
— More flexible placement (increase associativity)
— Larger blocks (16 to 64 bytes typical)

— Victim cache — small buffer holding most recently discarded
blocks

10/4/10 Fall 2010 - Lecture #16 19

10/4/10

Improving Cache Performance

(2 of 3)

2. Reduce the miss penalty

— Smaller b

locks

— Use a write buffer to hold dirty blocks being replaced so
don’t have to wait for the write to complete before reading

— Check write buffer (and/or victim cache) on read miss —
may get lucky

— For large blocks fetch critical word first
— Use multiple cache levels — L2 cache not tied to CPU clock

rate

— Faster backing store/improved memory bandwidth
* Wider buses

* Memory interleaving, DDR SDRAMs

10/4/10

Fall 2010 - Lecture #16

The Cache Design Space
(3 of 3)

* Several interacting dimensions
— Cache size
— Block size
— (Associativity)
— Replacement policy
— Write-through vs. write-back
— Write allocation
* Optimal choice is a compromise
— Depends on access characteristics 4,4
* Workload
* Use (I-cache, D-cache, TLB)
— Depends on technology / cost Good | Facter Factor 8

* Simplicity often wins Less More

Cache Size

Associativity

Block Size

10/4/10 Fall 2010 ~ Lecture #16 21

Characteristic

L1 cache organization
L1 cache size

Intel Nehalem

Split instruction and data caches.

32 KB each for instructions/data per
core

AMD Opteron X4 (Barcelona)

Split instruction and data caches
64 KB each for instructions/data
per core

L1 cache associativity

4-way (1), 8-way (D) set associative

2-way set associative

[E LRU LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate Write-back, Write-allocate
L1 hit time (load-use) | Not Available 3 clock cycles

T2 Cache organization | UnMied (msructon and date) per core

nified (instruction and data) per core

L2 cache size

256 KB (0.25 MB)

512 KB (0.5 MB)

L2 cache 8way set associ 16-way set associ

L2 LRU LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time Not Available 9 clock cycles

L3 cache Unified (instruction and data) Unified (instruction and data)
L3 cache size 8192 KB (8 MB), shared 2048 KB (2 MB), shared

L3 cache 16.way set i 32way set

L3 replacement Not Available Evict block shared by fewest cores
L3 block size 64 bytes 64 bytes

L3 write policy Write-back, Write-allocate Write-back, Write-allocate

L3 hit time Not Available 38 (?)clock cycles

10/4/10

Fall 2010 - Lecture #16

Intel Nehalem Chip Photo

uz 0} sﬁplla_'

o
8
F
o
-
3
8
a

¢ p

1105, % SBRHE-{LON

10/4/10 Fall 2010 - Lecture #16 2

CPI/Miss Rates/DRAM Access
Specint2006

LD
misses/

cache L2 D cache DRAM
1000 instr | misses/1000 instr [accesses/1000 instr
3.5 11 1.3

perl 0.75
bzip2 0.85 11.0 5.8 25
gec 1.72 24.3 13.4 14.8
mcf 10.00 106.8 88.0 88.5
g 1.09 4.5 1.4 1.7
hmmer 0.80 4.4 25 0.6
sieng 0.96 1.9 0.6 I 0.8
libquantum 161 33.0 331 477
h264avc 0.80 8.8 1.6 0.2
omnetpp 2.94 30.9 27.7 208
astar 1.79 16.3 9.2 8.2
xalancbmk 2.70 38.0 15.8 I 11.4
Median 135 136 75 5.4

10/4/10

Fall 2010 - Lecture #16

Typical Memory System Parameters

Total size in blocks

250-2000

Typical values Typical values for
for L1 caches paged memory

Total size in kilobytes
Block size in bytes
Miss penalty in clocks
Miss rates (global for L2)

16-64
16-64
10-25
2%-5%

15,000-50,000 16,000-250,000 40-1024.
500-4000 | 1,000,000-1,000,000,000 025-16
64-128 4000-64,000 432
100-1000 10,000,000-100,000,000 10-1000

0.1%-2% 0.00001%-0.0001% 0.01%-2%
Fall 2010 - Lecture #16 25

10/4/10

Summary

* Cache size is Data + Management (tags, valid,
dirty, etc. bits)
* Write misses trickier to implement than reads

* Cache Performance Equations:

— CPU time = IC x CPI,, x CC
= IC x (CPl g, + Memory-stall cycles) x CC

— AMAT = Time for a hit + Miss rate x Miss penalty

ideal

10/4/10 Fall 2010 - Lecture #16

