1 Asymptotics is Fun!

(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer in terms of N.

```java
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= x; i++) {
        g(N - 1, i);
    }
}
```

$g(N, 1)$: $\Theta(\)$

$g(N, 2)$: $\Theta(\)$

(b) Suppose we change line 6 to $g(N - 1, x)$ and change the stopping condition in the for loop to $i \leq f(x)$ where f returns a random number between 1 and x, inclusive. For the following function calls, find the tightest Ω and big O bounds.

```java
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= f(x); i++) {
        g(N - 1, x);
    }
}
```

$g(N, 2)$: $\Omega(\), O(\)$

$g(N, N)$: $\Omega(\), O(\)$
Give the runtime of the following functions in Θ or O notation as requested. Your answer should be as simple as possible with no unnecessary leading constants or lower order terms. For f_5, your bound should be as tight as possible (so don’t just put $O(N^{NM})$ or similar for the second answer).

```java
public static void f4(int N) {
    if (N == 0) {return;}
    f4(N / 2);
    f4(N / 2);
    f4(N / 2);
    f4(N / 2);
    g(N); // runs in $\Theta(N^2)$ time
}

Runtime: $\Theta(\ )$
```

```java
public static void f5(int N, int M) {
    if (N < 10) {return;}
    for (int i = 0; i <= N % 10; i++) {
        f5(N / 10, M / 10);
        System.out.println(M);
    }
}

Runtime: $O(\ )$
```
3 Flip Flop

Suppose we have the flip function as defined below. Assume the method unknown returns a random integer between 1 and N, exclusive, and runs in constant time. For each definition of the flop method below, give the best and worst case runtime of flip in \(\Theta() \) notation as a function of \(N \).

```java
public static void flip(int N) {
    if (N <= 100) {
        return;
    }
    int stop = unknown(N);
    for (int i = 1; i < N; i++) {
        if (i == stop) {
            flop(i, N);
            return;
        }
    }
}

(a) public static void flop(int i, int N) {
    flip(N - i);
}

Best Case: \( \Theta( ) \), Worst Case: \( \Theta( ) \)

(b) public static void flop(int i, int N) {
    int minimum = Math.min(i, N - i);
    flip(minimum);
    flip(minimum);
}

Best Case: \( \Theta( ) \), Worst Case: \( \Theta( ) \)

(c) public static void flop(int i, int N) {
    flip(i);
    flip(N - i);
}

Best Case: \( \Theta( ) \), Worst Case: \( \Theta( ) \)