1 Asymptotics Introduction

Give the runtime of the following functions in Θ notation. Your answer should be as simple as possible with no unnecessary leading constants or lower order terms.

```java
private void f1(int N) {
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < i; j++) {
            System.out.println("hello tony");
        }
    }
}
$$\Theta(\ldots)$$

private void f2(int N) {
    for (int i = 1; i < N; i *= 2) {
        for (int j = 1; j < i; j++) {
            System.out.println("hello hannah");
        }
    }
}
$$\Theta(\ldots)$$
```
2 Finish the Runtimes

Below we see the standard nested for loop, but with missing pieces!

```java
for (int i = 1; i < ______; i = ______) {
    for (int j = 1; j < ______; j = ______) {
        System.out.println("We will miss you next semester Akshit :-(");
    }
}
```

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: $\Theta(N^2)$
```java
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j = ______) {
        System.out.println("This is one is low key hard");
    }
}
```

(b) Desired runtime: $\Theta(\log(N))$
```java
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < ______; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
}
```

(c) Desired runtime: $\Theta(2^N)$
```java
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < ______; j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
```

(d) Desired runtime: $\Theta(N^3)$
```java
for (int i = 1; i < ______; i = i * 2) {
    for (int j = 1; j < N * N; j = ______) {
        System.out.println("yikes");
    }
}
```
3 Asymptotic Expressions

(a) Which of the following expressions are true? Check all that apply. Equations between asymptotic expressions, such as \(O(f) = O(g) \) simply mean that all functions that are \(O(f) \) are also \(O(g) \) and vice-versa. An expression such as \(O(f) \subseteq O(g) \) means that all functions that are \(O(f) \) are also \(O(g) \).

- \(\Theta(1000 \cdot N^3 + N \cdot \log(N)) = \Theta(N^3) \).
- For all \(k \geq 0 \), \(O(N^k) \subseteq O(N^{k+1}) \).
- For all \(k \geq 0 \), \(\Omega(N^k) \subseteq \Omega(N^{k+1}) \).
- For positive-valued functions \(f \) and \(g \), if \(f = \Omega(g) \) and \(g = O(h) \), \(f = \Omega(h) \).
- For positive-valued functions \(f \) and \(g \), if \(f = \Omega(g) \) and \(h = O(g) \), \(f = \Omega(h) \).

(b) For positive-valued functions \(f_0 \ldots f_k \), where we define \(f_i(n) = 1 + f_{n \% i}(n) \) for \(i \geq 1 \) and \(f_0(n) = 1 \), which of the following are true? Check all that apply. Assume that \(n > k \).

- The evaluation of \(f_k(n) \) may run forever.
- \(f_k(n) = \Omega(\log(k)) \), with respect to \(k \).
- \(f_k(n) = O(k) \), with respect to \(k \).
- \(f_k(n) = \Theta(1) \), with respect to \(n \).
- If \(n = k! - 1 \), \(f_k(n) = \Theta(k) \), with respect to \(k \).
4 Prime Factors

Determine the best and worst case runtime of `prime_factors` in Θ(.) notation as a function of N.

```
int prime_factors(int N) {
    int factor = 2;
    int count = 0;
    while (factor * factor <= N) {
        while (N % factor == 0) {
            System.out.println(factor);
            count += 1;
            N = N / factor;
        }
        factor += 1;
    }
    return count;
}
```

Best Case: Θ(), Worst Case: Θ()