1 Round Down

Here is a video walkthrough of the solutions.

Given some power of two \(\text{powerOfTwo} \) and a positive number \(\text{num} \), round \(\text{num} \) down to the nearest multiple of \(\text{powerOfTwo} \). Assume \(\text{powerOfTwo} \) is greater than or equal to 1. You may use only bit operations and one subtraction/addition operation.

Examples:

1. \(\text{roundDown}(8, 53) \rightarrow 48 \)
2. \(\text{roundDown}(16, 90) \rightarrow 80 \)
3. \(\text{roundDown}(1, 90) \rightarrow 90 \)

```java
public int roundDown(int powerOfTwo, int num) {
    return ________________________________;
}
```

Solution:

```java
public int roundDown(int powerOfTwo, int num) {
    return ~(powerOfTwo - 1) & num;
}
```

2 Heaps

a) (2.5 Points). i) (1 Point). Suppose we have the min-heap below (represented as an array) with distinct elements, where the values of A and B are unknown. Note that A and B aren’t necessarily integers.

\{1, A, 3, 5, 9, 11, 13, 10, B\}

What can we say about the relationships between the following elements? Put >, <, or ? if the answer is not known.

A □ > □ < □ ? 1

A □ > □ < □ ? 3

B □ > □ < □ ? 10

A □ > □ < □ ? B
Solution:

Here is a video walkthrough of the solutions.

\[A \sqrt{ > \circ < \circ \circ \circ } \ 1 \]

\[A \circ > \circ < \sqrt{ ? } \ 3 \]

\[B \circ > \circ < \sqrt{ ? } \ 10 \]

\[A \circ > \sqrt{ < \circ \circ } \ B \]

ii) (1.5 Points). Note for both parts below, the values of \(A \) and \(B \) should **not** violate the min-heap properties. Put -inf or inf if there isn’t a lower or upper bound, respectively. If the bound for \(B \) depends on the value of \(A \), or vice versa, you may put the variable in the bound, e.g. \(A < B \).

Considering **one removeMin** call, put **tight** bounds on \(A \) and \(B \) such that:

- We perform the **maximum** number of swaps.
 \[\ldots < A < \ldots \]
 \[\ldots < B < \ldots \]

- We perform the **minimum** number of swaps.
 \[\ldots < A < \ldots \]
 \[\ldots < B < \ldots \]

Solution:

Here is a video walkthrough of the solutions.

- We perform the **maximum** number of swaps.
 \[1 < A < 3 \]
 \[10 < B < \text{inf} \]

- We perform the **minimum** number of swaps.
 \[3 < A < 5 \]
 \[5 < B < 11 \]
3 Hashing Asymptotics

Here is a video walkthrough of the solutions.

Suppose we set the `hashCode` and `equals` methods of the `ArrayList` class as follows.

```java
/* Returns true iff the lists have the same elements in the same ordering */
@Override
public boolean equals(Object o) {
    if (o == null || o.getClass() != this.getClass() || o.size() != this.size()) {
        return false;
    }
    ArrayList<T> other = (ArrayList<T>) o;
    for (int i = 0; i < this.size(); i++) {
        if (other.get(i) != this.get(i)) {
            return false;
        }
    }
    return true;
}

/* Returns the sum of the hashCodes in the list. Assume the sum is a cached instance variable. */
@Override
public int hashCode() {
    return sum;
}
```

(a) Give the best and worst case runtime of `hashContents` in $\Theta(\cdot)$ notation as a function of N, where N is initial size of the list. Assume the length of set 's underlying array is N and the set does not resize. Assume the `hashCode` of an `Integer` is itself. Admittedly, the `ArrayList` class does not have the method `removeLast`, but assume it does for this problem, and is implemented in amortized constant time. Finally, assume f accepts two `ints`, returns an unknown `int`, and runs in constant time.

```java
static void hashContents(HashSet<ArrayList<Integer>> set, ArrayList<Integer> list) {
    if (list.size() <= 1) {
        return;
    }
    int last = list.removeLast();
    list.set(0, f(list.get(0), last));
    set.add(list);
    hashContents(set, list);
}
```

Best Case: $\Theta(\cdot)$, Worst Case: $\Theta(\cdot)$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta(N^2)$
(b) Continuing from the previous part, how can we define \(f \) to ensure the worst case runtime? How can we define \(f \) to ensure the best case runtime? There may be multiple possible answers.

1. Worst case:

```c
int f(int first, int last) {
    return ______________________;
}
```

Solution:

```c
int f(int first, int last) {
    return first + last;
}
```

2. Best case:

```c
int f(int first, int last) {
    return ______________________;
}
```

Solution:

```c
int f(int first, int last) {
    return first + last + 1;
}
```

Alternate solution:

```c
int f(int first, int last) {
    return first + last - 1;
}
```
4 Boolean Confusion

Here is a video walkthrough of the solutions.

Give the best and worst case runtime in \(\Theta(.) \) notation as a function of \(N \), where \(N \) is \(arr.length \). Your answer should be simple with no unnecessary leading constants or summations.

```java
void confusion(boolean[] arr) {
    boolean first = arr[0];
    int next;
    for (next = 1; arr[next] == first; next++) {
        if (next == arr.length - 1) {
            return;
        }
    }
    for (int i = 0; i < next; i++) {
        arr[i] = !arr[i];
    }
    confusion(arr);
}
```

Best Case: \(\Theta() \), Worst Case: \(\Theta() \)

Solution:

Best Case: \(\Theta(N) \), Worst Case: \(\Theta(N^2) \)

5 Gamma

Here is a video walkthrough of the solutions.

Give the best and worst case runtime in \(\Theta(.) \) notation as a function of \(N \). Your answer should be simple with no unnecessary leading constants or summations. Assume \(f(N) \) returns a random number between 1 and \(N/2 \), inclusive, and does so in constant time.

```java
static void gamma(int N) {
    if (N <= 10) {
        return;
    }
    for (int i = f(N); i < N; i += f(N)) {
        gamma(i);
    }
}
```

Best Case: \(\Theta() \), Worst Case: \(\Theta() \)

Solution:

Best Case: \(\Theta(log(N)) \), Worst Case: \(\Theta(2^N) \)