1. Fill in the Blanks

Fill in the following blanks related to min-heaps. Let \(N \) is the number of elements in the min-heap. For the entirety of this question, assume the elements in the min-heap are distinct.

1. \texttt{removeMin} has a best case runtime of \underline{\rule{3cm}{0.1pt}} and a worst case runtime of \underline{\rule{3cm}{0.1pt}}.

2. \texttt{insert} has a best case runtime of \underline{\rule{3cm}{0.1pt}} and a worst case runtime of \underline{\rule{3cm}{0.1pt}}.

3. A \underline{\rule{3cm}{0.1pt}} or \underline{\rule{3cm}{0.1pt}} traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.

4. The fourth smallest element in a min-heap with 1000 elements can appear in \underline{\rule{3cm}{0.1pt}} places in the heap.

5. Given a min-heap with \(2^N - 1 \) distinct elements, for an element

 \begin{itemize}
 \item to be on the second level it must be less than \underline{\rule{3cm}{0.1pt}} element(s) and greater than \underline{\rule{3cm}{0.1pt}} element(s).
 \item to be on the bottommost level it must be less than \underline{\rule{3cm}{0.1pt}} element(s) and greater than \underline{\rule{3cm}{0.1pt}} element(s).
 \end{itemize}

 \textit{Hint:} A complete binary tree (with a full last-level) has \(2^N - 1 \) elements, with \(N \) being the number of levels.

\textbf{Solution:}

1. \texttt{removeMin} has a best case runtime of \(\Theta(1) \) and a worst case runtime of \(\Theta(\log N) \).

2. \texttt{insert} has a best case runtime of \(\Theta(1) \) and a worst case runtime of \(\Theta(\log N) \).

3. A \textbf{pre order} or \textbf{level order} traversal on a min-heap can output the elements in sorted order.

 \textbf{Explanation:} The smallest item of a min heap is at the top, so whatever traversal we choose must output the top element first in a complete binary tree. Only preorder and level-order have this property.

4. The fourth smallest element in a min-heap with 1000 distinct elements can appear in \underline{\rule{3cm}{0.1pt}} places in the heap.

 \textbf{Explanation:} The 4th smallest item can be on the 2nd, 3rd, or 4th level of the heap.

5. Given a min-heap with \(2^N - 1 \) distinct elements, for an element -
• to be on the second level it must be less than \(2^{(N-1)} - 2\) element(s) and greater than 1 element(s).

• to be on the bottommost level it must be less than 0 element(s) and greater than \(N - 1\) element(s). \textbf{(must be greater than the elements on its branch)}

Explanation: An element on the second level must be larger than the root and less than the elements in its subtree. There are \(2^{(N-1)} - 2\) elements in the subtree of an element on the second level: half the elements in the tree minus the root, then subtracting off the node itself.

An element on the bottom level must be greater than all elements on the path from itself to the root. A min heap with \(2^N - 1\) elements has \(N\) levels, so there are \(N - 1\) items above it on a path to the root.
2 Heap Mystery

We are given the following array representing a min-heap where each letter represents a unique number. Assume the root of the min-heap is at index zero, i.e. A is the root. Note that there is no significance of the alphabetical ordering, i.e. just because B precedes C in the alphabet, we do not know if B is less than or greater than C.

Array: [A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an insert. The resulting state of the min-heap is shown below.

Array: [A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first operation has already been filled in for you!

1. removeMin()
2. __________________________
3. __________________________
4. __________________________

Solution:

1. removeMin()
2. insert(X)
3. removeMin()
4. insert(A)

Explanation: We know immediately that A was removed. Then, after looking at the final state of the min-heap, we see that C was removed. Then, for A to remain in the min-heap, we see that A must have been inserted afterwards. And, after seeing a new value X in the min-heap, we see that X must have been inserted as well. We just need to determine the relative ordering of the insert(X) in between the operations removeMin() and insert(A), and we see that the insert(X) must go before both.

(b) Fill in the following comparisons with either >, <, or ? if unknown. We recommend considering which elements were compared to reach the final array.

1. X _____ D
2. X _____ C
3. B _____ C
4. G _____ X

Solution:

1. X ? D
2. $X > C$
3. $B > C$
4. $G < X$

Reasoning:

1. X is never compared to D
2. X must be greater than C since C is removed after X’s insertion.
3. B must also be greater than C otherwise the second call to `removeMin` would have removed B.
4. X must be greater than G so that it can be "promoted" to the top after the removal of C. It needs to be promoted to the top to land in its new position.
3 Hashing Gone Crazy
For this question, use the following TA class for reference.

```java
public class TA {
    int charisma;
    String name;
    TA(String name, int charisma) {
        this.name = name;
        this.charisma = charisma;
    }
    @Override
    public boolean equals(Object o) {
        TA other = (TA) o;
        return other.name.charAt(0) == this.name.charAt(0);
    }
    @Override
    public int hashCode() {
        return charisma;
    }
}
```

Assume that the `hashCode` of a TA object returns `charisma`, and the `equals` method returns `true` if and only if two TA objects have the same first letter in their `name`.

Assume that the `ECHashMap` is a `HashMap` implemented with external chaining as depicted in lecture. The `ECHashMap` instance begins at size 4 and, for simplicity, does not resize. Draw the contents of `map` after the executing the insertions below:

```java
ECHashMap<TA, Integer> map = new ECHashMap<>();
TA sohum = new TA("Sohum", 10);
TA vivant = new TA("Vivant", 20);
map.put(sohum, 1);
map.put(vivant, 2);
vivant.charisma += 2;
map.put(vivant, 3);
sohum.name = "Vohum";
map.put(vivant, 4);
sohum.charisma += 2;
map.put(sohum, 5);
sohum.name = "Sohum";
TA shubha = new TA("Shubha", 24);
map.put(shubha, 6);
```
Solution:

```
0  "Vivant", 5  "Shubha", 6  all instances
1
2  "Sohum", 4  "Vivant", 3
3
```

Explanation:

Line 4: sohum has charisma value 10. $10 \% 4 = 2$, so sohum is placed in bucket 2 with value 1.

$0: [], 1: [], 2: [(sohum, 1)], 3: []$

Line 5: vivant is placed in bucket 0 with value 2.

$0: [(vivant, 2)], 1: [], 2: [(sohum, 1)], 3: []$

Line 7: Increasing the charisma value of vivant does not cause it to be rehashed! (This is why modifying objects in a Hashmap is dangerous—it can change the hashcode of your object and make it impossible to find which bucket it belongs to).

Line 8: vivant now has charisma 4, so bucket 2 also has a node pointing to vivant, with value 3. (Note that the two vivants refer to the same object).

$0: [(vivant, 2)], 1: [], 2: [(sohum, 1), (vivant, 3)], 3: []$

Line 11, 12: vivant with charisma 22 hashes to bucket 2. However, since we have changed sohum’s name to be “Vohum”, vivant.equals(sohum) returns true. Since we are hashing a key that is already present in the dictionary according to .equals, we replace sohum’s old value with the new value, 4.

$0: [(vivant, 2)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []$

Line 13, 14: sohum with charisma 12 hashes to bucket 0. However, since we have changed sohum’s name to be “Vohum”, sohum.equals(vivant) returns true. Since we are hashing a key that is already present in the dictionary according to .equals, we replace vivant’s old value with the new value, 5.

$0: [(vivant, 5)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []$

Line 16, 17, 18: shuba hashes to bucket 0. shuba.equals(vivant) returns false, so we add a new node after vivant with value 6.

$0: [(vivant, 5), (shuba, 6)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []$
4 Buggy Hash

The following classes may contain a bug in one of its methods. Identify those errors and briefly explain why they are incorrect and in which situations would the bug cause problems.

(a) class Timezone {
 String timeZone; // PST, EST etc.
 boolean dayLight;
 String location;
 ...
 public int currentTime() {
 // return the current time in that time zone
 }
 public int hashCode() {
 return currentTime();
 }
 public boolean equals(Object o) {
 Timezone tz = (Timezone) o;
 return tz.timeZone.equals(timeZone);
 }
}

Solution:
Although equal objects will have the same hashcode, but the problem here is that hashCode() is not deterministic. This may result in weird behaviors (e.g. the element getting lost) when we try to put or access elements.

(b) class Course {
 int courseCode;
 int yearOffered;
 String[] staff;
 ...
 public int hashCode() {
 return yearOffered + courseCode;
 }
 public boolean equals(Object o) {
 Course c = (Course) o;
 return c.courseCode == courseCode;
 }
}

Solution: The problem with this hashCode() is that not all equal objects have the same hashcode. This may produce unexpected behavior, e.g. multiple "equal" objects may be exist in different buckets in the HashMap, the containsKey operation may return false, etc. One key thing to remember is that when we override the equals() method, we have to also override the hashCode() method to ensure equal objects have the same hashCode.