Today:

- Pseudo-random Numbers (Chapter 11)
- What use are random sequences?
- What are “random sequences“?
- Pseudo-random sequences.
- How to get one.
- Relevant Java library classes and methods.
- Random permutations.
Why Random Sequences?

- Choose statistical samples
- Simulations
- Random algorithms
- Cryptography:
 - Choosing random keys and *nonces* (random one-time values used to make messages unique.)
 - Generating streams of random bits (e.g., stream ciphers encrypt messages by xor'ing reproducible streams of pseudo-random bits with the bits of the message.)
- And, of course, games
What Is a “Random Sequence”?

- How about: “a sequence where all numbers occur with equal frequency”?
 - Like 1, 2, 3, 4, …?
- Well then, how about: “an unpredictable sequence where all numbers occur with equal frequency?”
 - Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1,…?
- Besides, what is wrong with 0, 0, 0, 0, … anyway? Can’t that occur by random selection?
Pseudo-Random Sequences

- Even if definable, a “truly” random sequence is difficult (i.e., slow) for a computer (or human) to produce. Must have some nondeterministic external source. Can use:
 - Periods between radioactive decays.
 - Periods between keystrokes or incoming internet message.
 - Coin flips.

- For most purposes, we need only a sequence that satisfies certain statistical properties, even if deterministic (as is useful for reproducibility).

- Sometimes (e.g., cryptography) we need sequence that is hard or impractical to predict.

- Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests that random sequences (probably) pass.

- For example, look at lengths of runs: increasing or decreasing contiguous subsequences.

- Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth, volume 2.
Generating Pseudo-Random Sequences

- Not as easy as you might think.
- Seemingly complex jumbling methods can give rise to bad sequences.
- **Linear congruential method** is a simple method used by Java:

 \[
 X_0 = \text{arbitrary seed} \\
 X_i = (aX_{i-1} + c) \mod m, \quad i > 0
 \]

- Usually, \(m\) is large power of 2.
- For best results, want \(a \equiv 5 \mod 8\), and \(a, c, m\) with no common factors.
- This gives generator with a **period of \(m\)** (length of sequence before repetition), and reasonable **potency** (measures certain dependencies among adjacent \(X_i\).)
- Also want bits of \(a\) to “have no obvious pattern” and pass certain other tests (see Knuth).
- **Java uses** \(a = 25214903917, c = 11, m = 2^{48}\), to compute 48-bit pseudo-random numbers. It’s good enough for many purposes, but not **cryptographically secure**.
What Can Go Wrong (I)?

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

JOHN VON NEUMANN (1951)

• Short periods, many impossible values: E.g., \(a, c, m \) even.

• Obvious patterns. E.g., just using lower 3 bits of \(X_i \) in Java's 48-bit generator, to get integers in range 0 to 7. By properties of modular arithmetic,

\[
X_i \mod 8 = (25214903917X_{i-1} + 11 \mod 2^{48}) \mod 8 \\
= (5(X_{i-1} \mod 8) + 3) \mod 8
\]

so we have a period of 8 on this generator; sequences like

\[0, 1, 3, 7, 1, 2, 7, 1, 4, \ldots\]

are impossible. This is why Java doesn't give you the raw 48 bits.
What Can Go Wrong (II)?

Bad potency leads to bad correlations.

- The infamous IBM generator RANDU: \(c = 0, a = 65539, m = 2^{31}. \)
- When RANDU is used to make 3D points: \((X_i/S, X_{i+1}/S, X_{i+2}/S), \)
 where \(S \) scales to a unit cube, . . .
- . . . points will be arranged in parallel planes with voids between. So “random points” won’t ever get near many points in the cube:

![Diagram showing parallel planes with voids](https://commons.wikimedia.org/wiki/w/index.php?curid=3832343)

Additive Generators

• Additive generator:

\[X_n = \begin{cases}
\text{arbitrary value,} & n < 55 \\
(X_{n-24} + X_{n-55}) \mod 2^e, & n \geq 55
\end{cases} \]

• Other choices than 24 and 55 possible.

• This one has period of \(2^f(2^{55} - 1) \), for some \(f < e \).

• Simple implementation with circular buffer:

```c
i = (i+1) % 55;
X[i] += X[(i+31) % 55];  // Why +31 (55-24) instead of -24?
return X[i];  /* modulo 2^{32} */
```

• where \(X[0 .. 54] \) is initialized to some “random” initial seed values.
Cryptographic Pseudo-Random Number Generators

- The simple form of linear congruential generators means that one can predict future values after seeing relatively few outputs.
- Not good if you want _unpredictable_ output (think on-line games involving money or randomly generated keys for encrypting your web traffic.)
- A _cryptographic pseudo-random number generator (CPRNG)_ has the properties that
 - Given k bits of a sequence, no polynomial-time algorithm can guess the next bit with better than 50% accuracy.
 - Given the current state of the generator, it is also infeasible to reconstruct the bits it generated in getting to that state.
Cryptographic Pseudo-Random Number Generator Example

- Start with a good block cipher—an encryption algorithm that encrypts blocks of N bits (not just one byte at a time as for Enigma). AES is an example.

- As a seed, provide a key, K, and an initialization value I.

- The jth pseudo-random number is now $E(K, I + j)$, where $E(x, y)$ is the encryption of message y using key x.

Adjusting Range and Distribution

- Given raw sequence of numbers, \(X_i \), from above methods in range (e.g.) 0 to \(2^{48} \), how to get uniform random integers in range 0 to \(n - 1 \)?

- If \(n = 2^k \), is easy: use top \(k \) bits of next \(X_i \) (bottom \(k \) bits not as "random")

- For other \(n \), be careful of slight biases at the ends. For example, if we compute \(X_i/(2^{48}/n) \) using all integer division, and if \((2^{48}/n) \) gets rounded down, then you can get \(n \) as a result (which you don't want).

- If you try to fix that by computing \((2^{48}/(n-1)) \) instead, the probability of getting \(n - 1 \) will be wrong.
Adjusting Range (II)

- To fix the bias problems when \(n \) does not evenly divide \(2^{48} \), Java throws out values after the largest multiple of \(n \) that is less than \(2^{48} \):

```java
/** Random integer in the range 0 .. n-1, n>0. */
int nextInt(int n) {
    long X = next random long (0 \leq X < 2^{48});
    if (n is 2^k for some k)
        return top k bits of X;

    int MAX = largest multiple of n that is < 2^{48};
    while (X \geq MAX)
        X = next random long (0 \leq X < 2^{48});
    return X \mod (MAX/n);
}
```
Arbitrary Bounds

- How to get arbitrary range of integers (L to U)?
- To get random float, x in range $0 \leq x < d$, compute
 \[
 \text{return } d \times \text{nextInt}(1<<24) / (1<<24);
 \]
- Random double a bit more complicated: need two integers to get enough bits.
 \[
 \text{long bigRand} = ((\text{long}) \text{nextInt}(1<<26) \ll 27) + (\text{long}) \text{nextInt}(1<<27);
 \]
 \[
 \text{return } d \times \text{bigRand} / (1L \ll 53);
 \]
Generalizing: Other Distributions

- Suppose we have some desired probability distribution function, and want to get random numbers that are distributed according to that distribution. How can we do this?

- Example: the normal distribution:

\[P(Y \leq X) \]

- Curve is the desired probability distribution. \(P(Y \leq X) \) is the probability that random variable \(Y \) is \(\leq X \).
Generalizing: Other Distributions (II)

Solution: Choose y uniformly between 0 and 1, and the corresponding x will be distributed according to P.

$$P(X \leq Y)$$

![Graph showing the distribution of X given Y.](image-url)
Java Classes

- Math.random(): random double in [0..1).
- Class java.util.Random: a random number generator with constructors:
 - Random() generator with “random” seed (based on time).
 - Random(seed) generator with given starting value (reproducible).
- Methods
 - next(k) k-bit random integer
 - nextInt(n) int in range [0..n).
 - nextLong() random 64-bit integer.
 - nextBoolean(), nextFloat(), nextDouble() Next random values of other primitive types.
 - nextGaussian() normal distribution with mean 0 and standard deviation 1 ("bell curve").
- Collections.shuffle(L, R) for list L and Random R permutes L randomly (using R).
Shuffling

- A **shuffle** is a random permutation of some sequence.
- Obvious dumb technique for sorting \(N \)-element list:
 - Generate \(N \) random numbers
 - Attach each to one of the list elements
 - Sort the list using random numbers as keys.
- Can do quite a bit better:

  ```java
  void shuffle(List L, Random R) {
    for (int i = L.size(); i > 0; i -= 1)
      swap elements i-1 and R.nextInt(i) of L;
  }
  ```

- Example:

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>A♣</td>
<td>2♣</td>
<td>3♣</td>
<td>A♥</td>
<td>2♥</td>
<td>3♥</td>
</tr>
<tr>
<td>5 ↔ 1</td>
<td>A♣</td>
<td>3♥</td>
<td>3♣</td>
<td>A♥</td>
<td>2♥</td>
<td>2♣</td>
</tr>
<tr>
<td>4 ↔ 2</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♠</td>
</tr>
<tr>
<td>3 ↔ 3</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♠</td>
</tr>
<tr>
<td>2 ↔ 0</td>
<td>2♥</td>
<td>3♥</td>
<td>A♣</td>
<td>A♥</td>
<td>3♣</td>
<td>2♠</td>
</tr>
<tr>
<td>1 ↔ 0</td>
<td>3♥</td>
<td>2♥</td>
<td>A♣</td>
<td>A♥</td>
<td>3♣</td>
<td>2♠</td>
</tr>
</tbody>
</table>
Random Selection

• Same technique would allow us to select N items from list:

/** Permute L and return sublist of K>=0 randomly
 * chosen elements of L, using R as random source. */
List select(List L, int k, Random R) {
 for (int i = L.size(); i+k > L.size(); i -= 1)
 swap element i-1 of L with element
 R.nextInt(i) of L;
 return L.sublist(L.size()-k, L.size());
}

• Not terribly efficient for selecting random sequence of K distinct integers from $[0..N)$, with $K \ll N$.
Alternative Selection Algorithm (Floyd)

/** Random sequence of K distinct integers * from 0..N-1, 0<=K<=N. */
List<Integer> select(int N, int K, Random R)
{
 ArrayList<Integer> S = new ArrayList<>();
 for (int i = N-K; i < N; i += 1) {
 // All values in S are < i
 int s = R.randInt(i+1); // 0 <= s <= i < N
 if (s == S.get(j) for some j)
 // Insert value i (which can’t be there
 // yet) after the s (i.e., at a random
 // place other than the front)
 S.add(j+1, i);
 else
 // Insert random value s (which can’t be
 // there yet) at front
 S.add(0, s);
 }
 return S;
}

Example

<table>
<thead>
<tr>
<th>i</th>
<th>s</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>[4]</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>[2, 4]</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>[5, 2, 4]</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>[5, 8, 2, 4]</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>[5, 8, 2, 4, 9]</td>
</tr>
</tbody>
</table>

selectRandomIntegers(10, 5, R)