CS61B Lecture #31

Today:

• More balanced search structures (DS(IJ), Chapter 9

Coming Up:

• Pseudo-random Numbers (DS(IJ), Chapter 11)
Really Efficient Use of Keys: the Trie

- Haven’t said much about cost of comparisons.
- For strings, worst case is length of string.
- Therefore should throw extra factor of key length, L, into costs:
 - $\Theta(M)$ comparisons really means $\Theta(ML)$ operations.
 - So to look for key X, keep looking at same chars of X M times.
- Can we do better? Can we get search cost to be $O(L)$?

Idea: Make a multi-way decision tree, with one decision per character of key.
The Trie: Example

- Set of keys
 \{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet\}
- Ticked lines show paths followed for “abash” and “fabric”
- Each internal node corresponds to a possible prefix.
- Characters in path to node = that prefix.
Adding Item to a Trie

- Result of adding bat and faceplate.
- New edges ticked.

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

- bat
- faceplate

New edges ticked:
- ab
- ax
- fa
- fac
- face
- fabric
- abase
- abash
- abate
- abas
- abyss
- axe
- axolotl
- o
- p
- facet
```
A Side-Trip: Scrunching

- For speed, obvious implementation for internal nodes is array indexed by character.
- *Gives* \(O(L) \) *performance, \(L \) length of search key.*
- [Looks as if independent of \(N \), number of keys. Is there a dependence?]
- **Problem:** arrays are *sparsely populated* by non-null values—waste of space.

Idea: Put the arrays on top of each other!

- Use null (0, empty) entries of one array to hold non-null elements of another.
- Use extra markers to tell which entries belong to which array.
Scrunching Example

Small example: (unrelated to Tries on preceding slides)

- Three arrays, each indexed 0..9

A1: 0 1 2 3 4 5 6 7 8 9
 bass trout pike

A2: 0 1 2 3 4 5 6 7 8 9
 ghee milk oil

A3: 0 1 2 3 4 5 6 7 8 9
 salt cumin mace

- Now overlay them, but keep track of the original index of each item:

A1: 0* 1 2 3 4 5* 6 7* 8 9
A2: 0 1 2* 3 4 5 6* 7* 8 9
A3: 0 1* 2 3 4 5* 6 7 8 9*

Check:

A123: 0 -1 1 -1 2 5 5 7 6 7 9

Starred items are null in uncompressed array

Index in original array or -1 if null in all arrays

Last modified: Thu Nov 4 22:48:31 2021
Scrunching Example (contd.)

A1:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass</td>
<td>trout</td>
<td>pike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghee</td>
<td>milk oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>salt</td>
<td>cumin</td>
<td>mace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check:

| 0 | -1 | 1 | -1 | 2 | 5 | 5 | 7 | 6 | 7 | 9 |

Index in original array or -1 if null in all arrays

A123:

| 0* | 1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9 |

/* A2[i] == */ (Check[i + 2] == i) ? A123[i + 2] : null;
/* A3[i] == */ (Check[i + 1] == i) ? A123[i + 1] : null;
Practicum

• The scrunching idea is cute, but
 - Not so good if we want to expand our trie.
 - A bit complicated.
 - Actually more useful for representing large, sparse, fixed tables with many rows and columns.

• Furthermore, number of children in trie tends to drop drastically when one gets a few levels down from the root.

• So in practice, might as well use linked lists to represent set of node’s children...

• ...but use arrays for the first few levels, which are likely to have more children.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $\geq k$ high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.

 Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

• A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

```
-∞ 10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞
```

• To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about \(1/2\) as many nodes that are \(> k\) high as there are that are \(k\) high.

• Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 A skip list with keys at heights 0, 1, 2, and 3.

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(k \) high as there are that are \(k \) high.

 - Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are k high as there are that are k high.

 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

```
  -∞ 0 1 2 3 10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

  ↓
```

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.

- Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 \[-\infty \quad 10 \quad 20 \quad 25 \quad 30 \quad 40 \quad 50 \quad 55 \quad 60 \quad 90 \quad 95 \quad 100 \quad 115 \quad 120 \quad 125 \quad 130 \quad 140 \quad 150 \quad \infty \]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.

- Makes searches fast *with high probability*.
Probabilistic Balancing: Skip Lists

- A **skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- **Typical example:**

 ![Skip List Diagram]

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.
 - Makes searches fast **with high probability.**
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(\geq k \) high as there are that are \(k \) high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 \[
 \begin{array}{cccccccc}
 \infty & 10 & 20 & 25 & 30 & 40 & 50 & 55 & 60 & 90 & 95 & 100 & 115 & 120 & 125 & 130 & 140 & 150 & \infty
 \end{array}
 \]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(> k \) high as there are that are \(k \) high.

- Makes searches fast \textit{with high probability}.

Last modified: Thu Nov 4 22:48:31 2021
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(\geq k \) high as there are that are \(k \) high.

- Makes searches fast with high probability.
Example: Adding and deleting

- Starting from initial list:

- In any order, we add 126 and 127 (choosing random heights for them), and remove 20 and 40:

- Shaded nodes here have been modified.
Summary

• Balance in search trees allows us to realize $\Theta(lg N)$ performance.

• B-trees, red-black trees:
 - Give $\Theta(lg N)$ performance for searches, insertions, deletions.
 - B-trees good for external storage. Large nodes minimize # of I/O operations

• Tries:
 - Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
 - But hard to manage space efficiently.

• Interesting idea: scrunched arrays share space.

• Skip lists:
 - Give probable $\Theta(lg N)$ performance for searches, insertions, deletions
 - Easy to implement.
 - Presented for interesting ideas: probabilistic balance, randomized data structures.
Summary of Collection Abstractions

- Multiset
 - contains, iterator
 - List
 - get(n)
 - Set
 - Ordered Set
 - first
 - Unordered Set
 - Priority Queue
 - Sorted Set
 - subset
 - Map
 - contains, iterator
 - get
 - Unordered Map
 - Ordered Map

Blue: Java has corresponding interface
Green: Java has no corresponding interface
Data Structures that Implement Abstractions

Multiset

- **List**: arrays, linked lists, circular buffers
- **Set**
 - **OrderedSet**
 - *Priority Queue*: heaps
 - *Sorted Set*: binary search trees, red-black trees, B-trees, sorted arrays or linked lists
 - **Unordered Set**: hash table

Map

- **Unordered Map**: hash table
- **Ordered Map**: red-black trees, B-trees, sorted arrays or linked lists
Corresponding Classes in Java

Multiset (Collection)

- **List**: ArrayList, LinkedList, Stack, ArrayBlockingQueue, ArrayDeque
- **Set**
 - **Ordered Set**
 - *Priority Queue*: PriorityQueue
 - *Sorted Set (SortedSet)*: TreeSet
 - **Unordered Set**: HashSet

Map

- **Unordered Map**: HashMap
- **Ordered Map (SortedMap)**: TreeMap