What Are the Questions?

• Cost is a principal concern throughout engineering:
 “An engineer is someone who can do for a dime what any fool can do for a dollar.”

• Cost can mean
 - *Operational cost* (for programs, time to run, space requirements).
 - *Development costs*: How much engineering time? When delivered?
 - *Maintenance costs*: Upgrades, bug fixes.
 - *Costs of failure*: How robust? How safe?

• Is this program *fast enough*? Depends on:
 - *For what purpose*;
 - *For what input data*.

• How much *space* (memory, disk space)?
 - Again depends on what input data.

• How will it *scale*, as input gets big?
Enlightening Example

Problem: Scan a text corpus (say 10^9 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.

- Solution 2 (Doug McIlroy): UNIX shell script:
 \[
 \text{tr -c -s '[:alpha:]' '[:\n*:]' < FILE | } \\
 \text{sort | } \\
 \text{uniq -c | } \\
 \text{sort -n -r -k 1,1 | } \\
 \text{sed 20q}
 \]

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 1GB in \(\approx 256 \) sec.
 - I pick #2.

- In very many cases, almost anything will do: Keep It Simple.
Cost Measures (Time)

- **Wall-clock or execution time**
 - You can do this at home:

    ```
    time java FindPrimes 1000
    ```
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.

- **Dynamic statement counts** of # of times statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to specific data sets.

- **Symbolic execution times**:
 - That is, *formulas* for execution times as functions of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

• Symbolic execution time lets us see *shape* of the cost function.
• Since we are approximating anyway, pointless to be precise about certain things:
 - *Behavior on small inputs*:
 * Can always pre-calculate some results.
 * Times for small inputs not usually important.
 * Often more interested in *asymptotic behavior* as input size becomes very large.
 - *Constant factors* (as in “off by factor of 2”):
 * Just changing machines causes constant-factor change.
• How to abstract away from (i.e., ignore) these things?
Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but rather families of functions with similarly behaved magnitudes.

• Then say something like “f is bounded by g if it is in g’s family.”

• For any function \(g(x) \), the functions \(2g(x), 0.5g(x), \) or for any \(K > 0, K \cdot g(x) \), all have the same “shape”. So put all of them into g’s family.

• Any function \(h(x) \) such that \(h(x) = K \cdot g(x) \) for \(x > M \) (for some constant \(M \)) has g’s shape “except for small values.” So put all of these in g’s family.

• For upper limits, throw in all functions whose absolute value is everywhere \(\leq \) some member of g’s family. Call this set \(O(g) \) or \(O(g(n)) \).

• Or, for lower limits, throw in all functions whose absolute value is everywhere \(\geq \) some member of g’s family. Call this set \(\Omega(g) \).

• Finally, define \(\Theta(g) = O(g) \cap \Omega(g) \)—the set of functions bracketed in magnitude by two members of g’s family.
Big Oh

- **Goal:** Specify bounding from above.

\[M = 1 \]

- Here, \(f(x) \leq 2g(x) \) as long as \(x > 1 \),
- So \(f(x) \) is in \(g \)'s “bounded-above family,” written
 \[f(x) \in O(g(x)), \]
- ... *even though* (in this case) \(f(x) > g(x) \) everywhere.
Big Omega

- Goal: Specify bounding from below:

\[M = 1 \]

- Here, \(f'(x) \geq \frac{1}{2}g(x) \) as long as \(x > 1 \),

- So \(f'(x) \) is in \(g \)'s "bounded-below family," written

\[f'(x) \in \Omega(g(x)) \],

- … even though \(f(x) < g(x) \) everywhere.
Big Theta

• In the two previous slides, we not only have $f(x) \in O(g(x))$ and $f'(x) \in \Omega(g(x))$, ...

• ... but also $f(x) \in \Omega(g(x))$ and $f'(x) \in O(g(x))$.

• We can summarize this all by saying $f(x) \in \Theta(g(x))$ and $f'(x) \in \Theta(g(x))$.
Aside: Various Mathematical Pedantry

- Technically, if I am going to talk about $O(\cdot)$, $\Omega(\cdot)$ and $\Theta(\cdot)$ as sets of functions, I really should write, for example,

$$f \in O(g) \text{ instead of } f(x) \in O(g(x))$$

- In effect, $f(x) \in O(g(x))$ is short for $\lambda x. f(x) \in O(\lambda x. g(x))$.

- The standard notation outside this course, in fact, is $f(x) = O(g(x))$, but personally, I think that’s a serious abuse of notation.
How We Use Order Notation

- Elsewhere in mathematics, you’ll see $O(\ldots)$, etc., used generally to specify bounds on functions.

- For example,

$$\pi(N) = \Theta\left(\frac{N}{\ln N}\right)$$

which I would prefer to write

$$\pi(N) \in \Theta\left(\frac{N}{\ln N}\right)$$

(Here, $\pi(N)$ is the number of primes less than or equal to N.)

- Also, you’ll see things like

$$f(x) = x^3 + x^2 + O(x) \quad \text{(or } f(x) \in x^3 + x^2 + O(x)),$$

meaning that $f(x) = x^3 + x^2 + g(x)$ where $g(x) \in O(x)$.

- For our purposes, the functions we will be bounding will be cost functions: functions that measure the amount of execution time or the amount of space required by a program or algorithm.
Why It Matters

- Computer scientists often talk as if constant factors didn’t matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.

- In reality they do matter, but at some point, constants always get swamped.

<table>
<thead>
<tr>
<th>n</th>
<th>$16 \lg n$</th>
<th>\sqrt{n}</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
<td>65,636</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>1,024</td>
<td>32,768</td>
<td>4.2×10^9</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>262,144</td>
<td>1.8×10^{19}</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>2.1×10^9</td>
<td>3.4×10^{38}</td>
</tr>
</tbody>
</table>

...

| $1,024$ | 160 | 32 | $1,024$ | 10,240 | 1.0×10^6 | 1.1×10^9 | 1.8×10^{308} |
| ... | ... | ... | ... | ... | ... | ... | ... |

| 2^{10} | 320 | 1.0×10^6 | 2.1×10^7 | 1.1×10^{12} | 1.2×10^{18} | $6.7 \times 10^{315,652}$ |

- For example: replace column n^2 with $10^6 \cdot n^2$ and it still becomes dominated by 2^n.

Last modified: Thu Sep 30 16:33:24 2021
Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- $N =$ problem size.

<table>
<thead>
<tr>
<th>Time (μsec) for problem size N</th>
<th>1 second</th>
<th>Max N Possible in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 hour</td>
<td>1 month</td>
</tr>
<tr>
<td>$\lg N$</td>
<td>10^6</td>
<td>$3.6 \cdot 10^9$</td>
</tr>
<tr>
<td>N</td>
<td>10^{300000}</td>
<td>$10^{1000000000}$</td>
</tr>
<tr>
<td>$N \lg N$</td>
<td>63000</td>
<td>$1.3 \cdot 10^8$</td>
</tr>
<tr>
<td>N^2</td>
<td>1000</td>
<td>60000</td>
</tr>
<tr>
<td>N^3</td>
<td>100</td>
<td>1500</td>
</tr>
<tr>
<td>2^N</td>
<td>20</td>
<td>32</td>
</tr>
</tbody>
</table>
Using the Notation

- Can use this order notation for any kind of real-valued function.

- We will use them to describe cost functions. Example:

```java
/** Find position of X in list L, or -1 if not found. */
int find(List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals(L.head)) return c;
    return -1;
}
```

- Choose representative operation: number of `equals` tests.

- If N is length of L, then loop does at most N tests: worst-case time is N tests.

- In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is $O(N)$, regardless of units used to measure.

- Use $N > M$ provision (in defn. of $O(\cdot)$) to ignore empty list.
Be Careful

• It’s also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.

• The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.

• Instead, we are just saying something about the function that maps N into the largest possible time required to process any array of length N.

• To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.

• But again, that still tells us nothing about best-case time, which happens when we find x at the beginning of the loop. Best-case time is $\Theta(1)$.
Effect of Nested Loops

- Nested loops often lead to polynomial bounds:

```java
for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
        if (i != j && A[i] == A[j])
            return true;
return false;
```

- Clearly, time is $O(N^2)$, where $N = A.length$. Worst-case time is $\Theta(N^2)$.

- Loop is inefficient though:

```java
for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
        if (A[i] == A[j]) return true;
return false;
```

- Now worst-case time is proportional to

$$N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2 \in \Theta(N^2)$$

(so asymptotic time unchanged by the constant-factor speed-up).
Recursion and Recurrences: Fast Growth

- Silly example of recursion. In the worst case, both recursive calls happen:

```java
/** True iff X is a substring of S */
boolean occurs(String S, String X) {
    if (S.equals(X)) return true;
    if (S.length() <= X.length()) return false;
    return occurs(S.substring(1), X) || occurs(S.substring(0, S.length()-1), X);
}
```

- Define $C(N)$ to be the worst-case cost of `occurs(S,X)` for S of length N, X of fixed size N_0, measured in # of calls to `occurs`. Then

$$ C(N) = \begin{cases}
1, & \text{if } N \leq N_0, \\
2C(N-1) + 1 & \text{if } N > N_0
\end{cases} $$

- So $C(N)$ grows exponentially:

$$ C(N) = 2C(N-1) + 1 = 2(2C(N-2) + 1) + 1 = \ldots = 2(\ldots 2 \cdot 1 + 1) + \ldots + 1 = 2^{N-N_0} - 1 + 1 = 2^{N-N_0} - 1 \in \Theta(2^N) $$
Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn(String X, String[] S, int L, int U) {
 if (L > U) return false;
 int M = (L+U)/2;
 int direct = X.compareTo(S[M]);
 if (direct < 0) return isIn(X, S, L, M-1);
 else if (direct > 0) return isIn(X, S, M+1, U);
 else return true;
}

• Here, worst-case time, $C(D)$, (as measured by # of calls to .compareTo),
depends on size $D = U - L + 1$.

• We eliminate $S[M]$ from consideration each time and look at half the
rest. Assume $D = 2^k - 1$ for simplicity, so:

$$C(D) = \begin{cases}
0, & \text{if } D \leq 0, \\
1 + C((D - 1)/2), & \text{if } D > 0.
\end{cases}$$

$$= 1 + 1 + \ldots + 1 + 0$$

$$= k = \lg(D + 1) \in \Theta(\lg D)$$
Another Typical Pattern: Merge Sort

\[
\text{List sort}(\text{List } L) \{ \\
\quad \text{if } (L.\text{length}() < 2) \text{ return } L; \\
\quad \text{Split } L \text{ into } L0 \text{ and } L1 \text{ of about equal size}; \\
\quad L0 = \text{sort}(L0); \ L1 = \text{sort}(L1); \\
\quad \text{return Merge of } L0 \text{ and } L1
\}
\]

\[
\text{Merge ("combine into a single ordered list") takes time proportional to size of its result.}
\]

- Assuming that size of \(L \) is \(N = 2^k \), worst-case cost function, \(C(N) \), counting just merge time (which is proportional to \(\# \) items merged):

\[
C(N) = \begin{cases}
0, & \text{if } N < 2; \\
2C(N/2) + N, & \text{if } N \geq 2.
\end{cases}
\]

\[
= 2(2C(N/4) + N/2) + N \\
= 4C(N/4) + N + N \\
= 8C(N/8) + N + N + N \\
= N \cdot 0 + \underbrace{N + N + \ldots + N}_{k=\lg N} \\
= N \lg N
\]

- In general, can say it's \(\Theta(N \lg N) \) for arbitrary \(N \) (not just \(2^k \)).