1. Asymptotics is Fun!

(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer in terms of N.

```c
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= x; i++) {
        g(N - 1, i);
    }
}
```

$g(N, 1)$: $\Theta(N)$

Explanation: When x is 1, the loop gets executed once and makes a single recursive call to $g(N - 1)$. The recursion goes $g(N)$, $g(N - 1)$, $g(N - 2)$, and so on. This is a total of N recursive calls, each doing constant work.

$g(N, 2)$: $\Theta(N^2)$

Explanation: When x is 2, the loop gets executed twice. This means a call to $g(N)$ makes 2 recursive calls to $g(N - 1, 1)$ and $g(N - 1, 2)$. The recursion tree looks like this:

```
g(N, 2)
  /   \
g(N - 1, 1)   g(N - 1, 2)
  /       \
 g(N - 2, 1)   g(N - 2, 2)
```

From the first part, we know $g(\ldots, 1)$ does linear work. Thus, this is a recursion tree with N levels, and the total work is $(N - 1) + (N - 2) + \ldots + 1 = \Theta(N^2)$ work.

(b) Suppose we change line 6 to $g(N - 1, x)$ and change the stopping condition in the for loop to $i <= f(x)$ where f returns a random number between 1 and x, inclusive. For the following function calls, find the tightest Ω and big O bounds.
```c
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= f(x); i++) {
        g(N - 1, x);
    }
}
```

Solution:

- \(g(N, 2) \): \(\Omega(N), O(2^N) \)
- \(g(N, N) \): \(\Omega(N), O(N^N) \)

Explanation: Suppose \(f(x) \) always returns 1. Then, this is the same as case 1 from (a), resulting in a linear runtime.

On the other hand, suppose \(f(x) \) always returns \(x \). Then \(g(N, x) \) makes \(x \) recursive calls to \(g(N - 1, x) \), each of which makes \(x \) recursive calls to \(g(N - 2, x) \), and so on, so the recursion tree has 1, \(x \), \(x^2 \) ... nodes per level. Outside of the recursion, the function \(g \) does \(x \) work per node. Thus, the overall work is \(x \times 1 + x \times x + x \times x^2 + \ldots + x \times x^{N-1} = x(1 + x + x^2 + \ldots + x^{N-1}) \).

Plug in \(x = 2 \) to get \(2(1 + 2 + 2^2 + \ldots + 2^{N-1}) = O(2^N) \) for our first upper bound. Plug in \(x = N \) to get \(N(1 + N + N^2 + \ldots + N^{N-1}) = O(N^N) \) (ignoring lower-order terms).
2 Flip Flop

Suppose we have the flip function as defined below. Assume the method unknown returns a random integer between 1 and N, exclusive, and runs in constant time. For each definition of the flop method below, give the best and worst case runtime of flip in \(\Theta(\cdot) \) notation as a function of N.

```java
public static void flip(int N) {
    if (N <= 100) {
        return;
    }
    int stop = unknown(N);
    for (int i = 1; i < N; i++) {
        if (i == stop) {
            flop(i, N);
            return;
        }
    }
}
```

(a) ```java
public static void flop(int i, int N) {
 flip(N - i);
}
```  

Best Case: \( \Theta(\cdot) \), Worst Case: \( \Theta(\cdot) \)

**Solution:**  
Best Case: \( \Theta(N) \), Worst Case: \( \Theta(N) \)

**Explanation:** Consider some arbitrary value of stop. When stop = x, we do x work inside of flip (the for loop) and recursively call flip(N - x) through flop. This results in a total of \( N / x \) calls before reaching our base case, and x work per call, for a total of \( \Theta(N) \) work. Note that this holds for any value of x, so our best and worst case are the same.

(b) ```java
public static void flop(int i, int N) {
    int minimum = Math.min(i, N - i);
    flip(minimum);
    flip(minimum);
}
```  

Best Case: \(\Theta(\cdot) \), Worst Case: \(\Theta(\cdot) \)

Solution:
Best Case: \(\Theta(1) \), Worst Case: \(\Theta(N \log N) \)

Explanation: In the best case, stop = 1. This hits the base case immediately, so we make 2 calls to flip then stop for \(\Theta(1) \) work.

In the worst case, stop = \(N / 2 \). This results in flip making 2 recursive calls to itself with the argument \(N / 2 \). Note the similarity of this recurrence and mergesort; the runtime is the same \(\Theta(N \log N) \).
(c) public static void flop(int i, int N) {
 flip(i);
 flip(N - i);
}

Best Case: $\Theta(\)$, Worst Case: $\Theta(\)$

Solution:
Best Case: $\Theta(N)$, Worst Case: $\Theta(N^2)$

Explanation: In the best case, suppose $\text{stop} = 1$. Then $\text{flip}(N)$ makes recursive calls to $\text{flip}(1)$ and $\text{flip}(N - 1)$, the first of which terminates immediately in the base case. $\text{flip}(N - 1)$ then calls $\text{flip}(1)$ and $\text{flip}(N - 2)$. The pattern is a linear recursion: constant work per call, N calls total for $\Theta(N)$ work.

In the worst case, suppose $\text{stop} = N - 1$. Note that this case is symmetrical to the best case in terms of recursive calls; however we do work proportional to N inside of flip each time because of the for loop. The overall work is $(N - 1) + (N - 2) + (N - 3) + \ldots + 2 + 1 = \Theta(N^2)$.
3 Prime Factors

Determine the best and worst case runtime of `prime_factors` in $\Theta(\cdot)$ notation as a function of N.

```java
int prime_factors(int N) {
    int factor = 2;
    int count = 0;
    while (factor * factor <= N) {
        while (N % factor == 0) {
            System.out.println(factor);
            count += 1;
            N = N / factor;
        }
        factor += 1;
    }
    return count;
}
```

Best Case: $\Theta(\cdot)$, Worst Case: $\Theta(\cdot)$

Solution:
Best Case: $\Theta(log(N))$, Worst Case: $\Theta(\sqrt{N})$

Explanation: In the best case, N is some power of 2. Then the inner while loop will halve N each time until it becomes 1. At this point, both the inner and outer while loop conditions will be false and the function will return. Halving N each time results in a $\Theta(log N)$ runtime.

In the worst case, N will not be divisible by any value of `factor`. This means we increment `factor` by 1 each time until `factor * factor > N`. This is at most \sqrt{N} loops.