1. Asymptotics Introduction

Give the runtime of the following functions in Θ notation. Your answer should be as simple as possible with no unnecessary leading constants or lower order terms.

```java
private void f1(int N) {
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < i; j++) {
            System.out.println("hello tony");
        }
    }
}
```

$\Theta(___)$

Solution: $\Theta(N^2)$

Explanation: The inner loop does up to i work each time, and the outer loop increments i each time. Summing over each loop, we get that $1 + 2 + 3 + 4 + \ldots + N = \Theta(N^2)$.

```java
private void f2(int N) {
    for (int i = 1; i < N; i *= 2) {
        for (int j = 1; j < i; j++) {
            System.out.println("hello hannah");
        }
    }
}
```

$\Theta(___)$

Solution: $\Theta(N)$

Explanation: The inner loop does i work each time, and we double i each time until reaching N. $1 + 2 + 4 + 8 + \ldots + N = \Theta(N)$

Here is a video walkthrough of both parts.
2 Finish the Runtimes

Below we see the standard nested for loop, but with missing pieces!

```java
for (int i = 1; i < ______; i = ______) {
    for (int j = 1; j < ______; j = ______) {
        System.out.println("We will miss you next semester Akshit :(");
    }
}
```

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find `Math.pow` helpful.

(a) Desired runtime: $\Theta(N^2)$

```java
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j = ______) {
        System.out.println("This is one is low key hard");
    }
}
```

Explanation: Remember the arithmetic series $1+2+3+4+\ldots+N = \Theta(N^2)$. We get this series by incrementing j by 1 per inner loop.

(b) Desired runtime: $\Theta(log(N))$

```java
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < ______; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
}
```

Explanation: The outer loop already runs $log\ n$ times, since i doubles each time. This means the inner loop must do constant work (so any constant $j < k$ would work).
(c) Desired runtime: $\Theta(2^N)$

```java
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < ______; j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
```

Explanation: Remember the geometric series $1 + 2 + 4 + \ldots + 2^N = \Theta(2^N)$. We notice that i increments by 1 each time, so in order to achieve this 2^N runtime, we must run the inner loop 2^i times per outer loop iteration.

(d) Desired runtime: $\Theta(N^3)$

```java
for (int i = 1; i < ______; i = i * 2) {
    for (int j = 1; j < N * N; j = ______) {
        System.out.println("yikes");
    }
}
```

Explanation: One way to get N^3 runtime is to have the outer loop run N times, and the inner loop run N^2 times per outer loop iteration. To make the outer loop run N times, we need stop after multiplying $i = i \times 2$ N times, giving us the condition $i < \text{Math.pow}(2, \text{N})$. To make the inner loop run N^2 times, we can simply increment by 1 each time.
3 Bit Operations

In the following questions, use bit manipulation operations to achieve the intended functionality and fill out the function details -

(a) Implement a function `isPalindrome` which checks if the binary representation of a given number is palindrome. The function returns true if and only if the binary representation of `num` is a palindrome.

For example, the function should return true for `isPalindrome(9)` since binary representation of 9 is `1001` which is a palindrome.

```java
/** *
 * Returns true if binary representation of num is a palindrome *
 */

public static boolean isPalindrome(int num) {
    // stores reverse of binary representation of num
    int reverse = 0;

    int k = num;
    while (k > 0) {
        reverse = (reverse << 1) | (k & 1);
        k >>= 1;
    }

    return num == reverse;
}

Solution:
```
while (k > 0) {
 // add rightmost bit to reverse
 reverse = (reverse << 1) | (k & 1);
 k = k >> 1; // drop last bit
}
return num == reverse;

Explanation: The main idea is to reverse the bits of num; it is a palindrome if and only if it is equal to its reverse. To do this, we initialize reverse to all zeros. Inside the loop:

1. Shift reverse to "vacate" its last bit.
 \[rrr \ll 1 \rightarrow rrr0 \]

2. Get the last bit of k.
 \[kkkk \& 0001 \rightarrow 000k \]

3. or the numbers together to get the combined bits.
 \[rrr0 \mid 000k \rightarrow rrrk \]

4. Remove the bit of k we just used.
(b) Implement a function \texttt{swap} which for a given integer, swaps two bits at given positions. The function returns the resulting integer after bit swap operation.

For example, when the function is called with inputs \texttt{swap(31, 3, 7)}, it should reverse the 3rd and 7th bits from the right and return 91 since 31 (00011111) would become 91 (01011011).

```java
/**
 * Function to swap bits at position a and b (from right) in integer num
 */
public static int swap(int num, int a, int b) {
    int p = a - 1;
    int q = b - 1;
    int bit_a = (num >> p) & 1;
    int bit_b = (num >> q) & 1;
    if (bit_a != bit_b) { // if the bits are different
        num ^= (1 << p);
        num ^= (1 << q);
    }
    return num;
}
```

Solution:
Explanation: To get the kth bit from the right in a number, we can shift the number right by \(k - 1 \) bits, then perform an `&` with 1. For a visualization, suppose we are trying to get the third bit from the right for \(b_4b_3b_2b_1 \). First, we right shift by 2 to get 00\(b_4b_3 \). 00\(b_4b_3 \) & 0001 gives 000\(b_3 \) as desired. This is the operation performed in line 8 and 9.

We only need to swap if the two bits are different. If the bits are different, this problem reduces to flipping the bits at position \(a \) and \(b \). To flip a bit at position \(k \), we simply `xor` it with 1 (\(1 \oplus 1 = 0 \), \(0 \oplus 1 = 1 \)). This corresponds to lines 12 and 13.

4 Bits Runtime

Determine the best and worst case runtime of `tricky`.

```java
public void tricky(int n) {
    if (n > 0) {
        tricky(n & (n - 1));
    }
}
```

Solution:

Best Case: \(\Theta(1) \), Worst Case: \(\Theta(\log N) \)

Explanation: The main idea is that this function zeros out a 1 in \(n \) each time. If \(n \) starts off as some power of 2, it only has one 1 and finishes in constant time. If \(n \) is all ones, it takes \(\log N \) recursive calls to finish (there are \(\log N \) bits in \(N \)).

There are two main cases for \(n \). First, if \(n \) is odd, \(n - 1 \) has a 0 in the last bit, so the last bit of \(n \) will be zeroed out. If \(n \) is even so its last bits are something like 10 \ldots 0, then the last bits of \(n - 1 \) will be 01 \ldots 1. and-ing these together zeros out the first nonzero bit from the right.