CS61A Lecture 27
Logic Programming

Jom Magrotker
UC Berkeley EECS

August 2, 2012

- - E)

COMPUTER SCIENCE IN THE NEWS

Adding a '3D print' button to
animation software

July 31, 2012

Tool developed at Harvard turns animated characters into fully articulated
action figures

CONTACT: EdCaroline Perry, (617) 496-1351

G.I. Joe may have finally met his match. (Photo courtesy of Moritz Bacher.)

- . - ’ - ’ - @ http://www.seas.harvard.edu/news-events/press-releases/adding-a-3d-print-button-to-animation-software 2

* Review: PyGic
e Unification

TODAY

DECLARATIVE PROGRAMMING

New paradigm!

In declarative programming, we describe what the
properties of the required solution are, and the
computer discovers how to find the solution.

Logic programming is a type of declarative
programming that uses mathematical logic and logical
inference to solve a problem.

- 4 K B @ 4 ‘&_lg
http://www.5buckreview.com/wp-content/uploads/2011/03/Nimoy_Spock-284x300.jpg

REVIEW: PYGIC

Suppose we asserted the following fact:
P?> fact doctor(<christopher, david, matt>)

What would the interpreter print in response to the following queries?
P?> doctor(?who)

P?> doctor(<?who>)
P?> doctor(<?ninth, ?tenth, ?eleventh>)
P?> doctor(<?ninth | ?rest>)

P?> doctor(<christopher, ?tenth | ?eleventh>)

- -(E) : sz

REVIEW: PYGIC

Suppose we asserted the following fact:
P?> fact doctor(<christopher, david, matt>)

What would the interpreter print in response to the following queries?
P?> doctor(?who)

?who = <christopher, david, matt>

P?> doctor(<?who>)

No.

P?> doctor(<?ninth, ?tenth, ?eleventh>)

?ninth = christopher, ?tenth = david, ?eleventh = matt
P?> doctor(<?ninth | ?rest>)

?ninth = christopher, ?rest = <david, matt>

P?> doctor(<christopher, ?tenth | ?eleventh>)

?tenth = david, ?eleventh = <matt>

=) ; Qf

PYGIC: RULES

oo

P?> rule grandfather(?person, ?grandson):
father(?person, ?son)

father(?son, ?grandson)

The conclusion is true only if the hypotheses are true.

Can variables be replaced with values such that the
hypotheses are true? If so, the conclusion is true too.

=) 7 QZQf

PYGIC: RULES FOR LISTS

We can also define rules for lists.

For example, say we want to check if two (flat)
lists are equal.

What are some facts we know about equal lists?

- -(E) ; sz

PYGIC: RULES FOR LISTS

Fact 1:
The empty list is only equal to itself.

P?> fact equal lists(<>, <>)

A fact, by the way, is equivalent to a rule with True
in the body:

P?> rule equal lists(<>, <>):

True

True is a PyGic keyword

that is, well, true. 9 2 7

PYGIC: RULES FOR LISTS

Two lists are equal if

their first elements are equal, and if

the rest of their elements are equal.

P?> rule equal 1lists(<?x | ?restl>, <?x | ?rest2>):
equal lists(?rebtl, ?rest2)

The same variable is used in two places.
A list can therefore only match if the first

elements have the same value.

PYGIC: RULES FOR LISTS

We want to append one list to another:

P?> append(<1, 2, 3>, <4, 5>, <1, 2, 3, 4, 5>)
Yes.

P?> append(<1, 2, 3>, <4, 5>, ?what)

Yes.

’what = <1, 2, 3, 4, 5>

- -(E) " Qf

PYGIC: RULES FOR LISTS

What are some facts we know about the problem?

Fact 1: Appending the empty list to any other list gives
us the other list.

Fact 2: Appending one list to another is equivalent to
adding the first element of the first list to the result of

appending the second list to the rest of the first list.

What facts or rules should we then define?

- -(E) ’ Qf

PYGIC: RULES FOR LISTS

P?> fact append(<>, ?z, ?z)

We indicate that the first element of the first list
and of the result must be the same.
P?> rule append(<?x | 2u>, ?v, <?x | ?w>):
e append(?u, ?v, °?w)

- - .- =) 13£24f

PYGIC: RULES FOR LISTS

P?> fact append(<>, ?z, ?z)

What about the rest of the first list, the second

list, and the result?

P?> rule append(<?x | 2u>, ?v, <?x | ?w>):
e append(?u, ?v, °?w)

PYGIC: RULES FOR LISTS (PRACTICE)

We can now run append “backwards”.

P?> append(<1l, 2, 3>, ?what, <1, 2, 3, 4, 5>)

Yes.
’what = <4, 5>

P?> append(?what, ?other, <1, 2, 3, 4, 5>)
Yes.

’what = <>
?other = <1, 2, 3, 4, 5>

P?> more?

Yes.

’what = <1>

?other = <2, 3, 4, 5>

- -(E) s Qf

PYGIC: RULES FOR LISTS (PRACTICE)

Write the rule(s) reverse that will match only if the second
list has elements in the reverse order as the first.

P?> reverse(<l, 2, 3>, <3, 2, 1>)
Yes.

P?> reverse(<l, 2, 3>, <1, 2>)
No.

P?> reverse(<l, 2, 3>, ?what)
Yes.

what = <3, 2, 1>

(Hint: You may find append useful here.)

- - - () " sz

PYGIC: RULES FOR LISTS (PRACTICE)

P?> fact reverse(<>, <>)
P?> rule reverse(<?first | ?rest>, ?rev):

reverse(?rest, ?rest_rev)
append(?rest_rev, <?first>, ?rev)

.- E) 17£ng

PYGIC: RULES FOR LISTS (PRACTICE)

Write the rule(s) palindrome that will match only if the
list is a palindrome, where the list reads the same
forwards and backwards.

P?> palindrome(<1l, 2, 3>)

No.

P?> palindrome(<1l, 2, 3, 2, 1>)
Yes.

(Hint: You have defined reverse and equal lists.)

- - - () , Qf

PYGIC: RULES FOR LISTS (PRACTICE)

P?> rule palindrome(?list):
reverse(?list, ?list rev)
equal lists(?list, ?list rev)

m- - .- .(E) 19£ng

ANNOUNCEMENTS

e Homework 13 due Saturday, August 4.
— Includes Py, streams, iterators, and generators
— Also includes the Project 4 contest.
 Project 4 due Tuesday, August 7.
— Partnered project, in two parts.
— Twelve questions, so please start early!
— Two extra credit questions.
e De-stress potluck tonight from 7pm to 10pm in
the Wozniak Lounge (Soda, 4" floor).
— Food and games.
— Come and leave when you want.

- - - -(E) » Call

ANNOUNCEMENTS: FINAL

* Final is Thursday, August 9.
— Where? 1 Pimentel.
— When? 6PM to 9PM.

— How much? All of the material in the course, from June 18 to
August 8, will be tested.

e (Closed book and closed electronic devices.
e One 8.5”" x11” ‘cheat sheet’ allowed.
* No group portion.

 We have emailed you if you have conflicts and have told us.
If you haven’t told us yet, please let us know by toda

* Final review sessions on Monday, August 6 and Tuesday,
August 7, from 8pm to 9:30pm in the HP Auditorium (306
Soda).

- - - -(E) x (ol

How PYGIC WORKS

Assume that we have asserted these facts:
P?> fact father(james, harry)

Yes.

P?> fact father(harry, albus_ severus)
Yes.

P?> fact father(harry, james sirius)
Yes.

What happens in response to the query:
P?> father(?who, ?child)

- - - () . Qf

How PYGIC WORKS

IH

PyGic starts off with a “global” empty frame.

There are no bindings in this frame yet.

How PYGIC WORKS

PyGic first searches for the facts that match the query
and the rules whose conclusions match the query.

There are three such facts:
father(james, harry)
father(harry, albus severus)
father(harry, james sirius)

- -(E) 245243

How PYGICc WORKS

PyGic picks a fact:
father(james, harry)
father(harry, albus severus)
father(harry, james sirius)

- - - () zsééf

How PYGICc WORKS

PyGic prepares an empty frame that extends the
global frame.

& 6
The current frame

It makes a new empty frame for every query.

m- - .- .(E) ” Qf

How PYGIC WORKS

PyGic attempts to unify the query with the fact.

Unification is a generalized form of pattern
matching, where either or both of the patterns
being matched may contain variables.

- -(E) . Qf

How PYGIC WORKS: UNIFICATION

To match the query
father(?who, ?child)
with the fact
father(james, harry),
PyGic must check if
*who = james, ?child = harry.

- -(E) 2 sz

How PYGIC WORKS: UNIFICATION

PyGic checks if the variables
*who or ?child

have any values in the current frame.

How PYGIC WORKS: UNIFICATION

There are none!

So, PyGic binds the variables to these values in the
current frame.

who —> james
?child — harry

Now, trivially, we know that
*who = james, ?child = harry
Is true.

- -(E) 0 sz

How PYGIC WORKS: UNIFICATION

PyGic is done with the query, since it
successfully matched the query to a fact.

PyGic returns the frame and its bindings to be
printed back to the user.

- -(E) . Qf

How PYGIC WORKS: BACKTRACKING

What happens if the user asks for more?

PyGic returns to the last point at which it made a
choice (a choice point), and ignores all the frames that
it made as a result of that choice.

There, it tries to make another choice, if it can. If not, it
goes to the choice point before that, and attempts to
make another choice.

- - - () . Qf

How PYGIC WORKS: BACKTRACKING

In this example, it made a choice when it chose
which fact to unify. As a result, a new frame is
created with possibly new bindings.

If it cannot choose another fact or rule to unify,
and if there are no more choice points, then
there are no more ways to satisfy the rules.

- -(E) . Qf

How PYGIC WORKS: BACKTRACKING

This is known as chronological backtracking.

PyGic backtracks to the last point at which it
made a choice and attempts to make another
one to find another solution.

- -(E) y Qf

How PYGIC WORKS

Now, say that we have the following rule:

P?> rule grandfather(?who, ?grandson):
father(?who, ?son)
father(?son, ?grandson)

What happens in response to the query:
P?> grandfather(james, ?grandson)

- -(E) . Qf

How PYGIC WORKS

PyGic first searches for the facts that match the query
and the rules whose conclusions match the query.

There is only one such rule:
grandfather(?who, ?grandson)

PyGic picks this rule.

- -(E) 36524f

How PYGIC WORKS

PyGic will rename the variables to avoid confusion with
other rules that may have the same variable names.

The rule is now
grandfather(?who#1, ?grandson#2):
father(?who#l, ?son#3)
father(?son#3, ?grandson#2)

- -(E) 37£ng

How PYGIC WORKS

PyGic prepares an empty frame, where no variables
have yet been bound to any value.

How PYGIC WORKS: UNIFICATION

To match the query
grandfather(james, ?grandson)
with the rule conclusion
grandfather(?who#l, ?grandson#2),
PyGic must check if
*who#1l = james,
’grandson#2 = ?grandson.

- -(E) . Qf

How PYGIC WORKS: UNIFICATION

PyGic checks if the variables
*who#1l, ?grandson#2, ?grandson
have any values in the current frame.

How PYGIC WORKS: UNIFICATION

There are none!

So, PyGic makes the proper bindings in the

current frame.

who#1 —> james
?grandson#2 —> ?grandson

How PYGIC WORKS: HYPOTHESES

However, this is a rulel

PyGic needs to determine if the hypotheses are
true to infer that the conclusion is true.

PyGic will consider each hypothesis as a new
guery, and determine if each hypothesis is true.

- -(E) » Qf

How PYGIC WORKS

The new query is
father(?who#l, ?son#3)

PyGic searches for facts and rule conclusions that
match this query. There are three such facts:

father(james, harry)
father(harry, albus _severus)
father(harry, james sirius)

- - - () 43524f

How PYGICc WORKS

PyGic picks a fact:
father(james, harry)
father(harry, albus severus)
father(harry, james sirius)

- - - () 44£é£

How PYGICc WORKS

VG
yGic prepares an empty frame, which extends the
previous frame.

who#1l —> james
?grandson#2 —> ?grandson

ery different from the environment
diagrams we studied earlier.

ThisisV

vVariables could not be assigned to
variables!

How PYGIC WORKS: UNIFICATION

To match the query
father(?who#l, ?son#3)
with the fact
father(james, harry),
PyGic must check if
*who#l = james, ?son#3 = harry.

- -(E) i sz

How PYGIC WORKS: UNIFICATION

PyGic checks if the variables
*who#1 or ?son#3

have any values in the current frame or its parent.

who#1 —> james
?grandson#2 —> ?grandson

- - - ()

How PYGIC WORKS: UNIFICATION

*who#1 has a value, but that value matches james.
There are no bindings for ?son#3.

who#1 —> james ?son#3 —> harry
?grandson#2 —> ?grandson

PyGic binds ?son#3 with harry.
The query has been successfully unified with a fact.

- - - () - Qf

How PYGIC WORKS

The first hypothesis in the body of the grandfather
rule is true. Now, we check the second hypothesis

father(?son#3, ?grandson#2)

PyGic searches for facts and rule conclusions that
match this query. There are three such facts:

father(james, harry)
father(harry, albus _severus)
father(harry, james sirius)

- -(E) 49524f

How PYGICc WORKS

PyGic picks a fact:
father(james, harry)
father(harry, albus severus)
father(harry, james sirius)

- - - () soééf

How PYGIC WORKS

PyGic prepares another empty frame, which extends
the previous frame.

?whotl —> james
?grandson#2 —> ?grandson

?son#3 —> harry

How PYGIC WORKS: UNIFICATION

To match the query
father(?son#3, ?grandson#2)
with the fact
father(james, harry),
PyGic must check if
’son#3 = james, ?grandson#2 = harry.

- -(E) . Qf

How PYGIC WORKS: UNIFICATION

PyGic checks if the variables
?son#3 or ?grandson#2

have any values in the current frame or its parents.

?who#1 —> james ?son#3 —> harry
?grandson#2 —> ?grandson

How PYGIC WORKS: UNIFICATION

?son#3 has a value, which does not match james.

?who#1 —> james ?son#3 —> harry
?grandson#2 =—> ?grandson

The query is not true, given the existing bindings.

- -(E) y Qf

How PYGICc WORKS

PyGic then backtracks and picks another fact:
father(james, harry)
father(harry, albus severus)
father(harry, james sirius)

- - - () ssééf

How PYGIC WORKS

PyGic prepares another empty frame, which extends
the previous frame.

?who#1 —> james ?son#3 —> harry
?grandson#2 —> ?grandson

Notice that the “previous frame” is the frame before
the last choice point.

- - - () . sz

How PYGIC WORKS: UNIFICATION

To match the query
father(?son#3, ?grandson#2)
with the fact
father(harry, albus _severus),
PyGic must check if
?son#3 = harry,
’grandson#2 = albus_severus.

- -(E) . Qf

How PYGIC WORKS: UNIFICATION

PyGic checks if the variables
?son#3 or ?grandson#2

have any values in the current frame or its parents.

?who#1 —> james ?son#3 —> harry
?grandson#2 —> ?grandson

How PYGIC WORKS: UNIFICATION

?son#3 has a value, but that value matches harry.

?grandson#2 has a value ?grandson.

?whotl —> james
?grandson#2 =—> ?grandson

?son#3 —> harry

?grandson —> albus_severus

PyGic binds ?grandson with albus_severus.

The query has been unified with the fact.

- - - ()

Gt

How PYGIC WORKS

Both the hypotheses of the grandson rule are
true, so the conclusion must also be true.

The values for the variables in the original query
(?grandson) are looked up in the environment
and printed.

- -(E) , Qf

How PYGIc WORKS: CODE (SIMPLIFIED)

To prove a query in the given environment and

with a given rule database...

def prove _query(query, env, ruledb):
- If the query is the true expression
if i r xpr ry): ’
s_true_expr(query): <€ yield the current environment.

yield env
else:
matching rules = ruledb.find rules matching(query)
for rule in matching rules: Find all the rules in the database
le = 1 whose conclusions match the query.
rule = rule. Pename() Remember that facts are also rules,
newenv = pygic.environments.Environment(env) each with a body of True.

if unify_expr_lists(query, rule.conclusion, new_env):
for result in prove_queries(rule.hypotheses, newenv, ruledb):

yield result

- - .- =) . Qf

How PYGIc WORKS: CODE (SIMPLIFIED)

def prove _query(query, env, ruledb):
if is_true_expr(query):

yield env
else:
matching rules = ruledb.find rules matching(query)
for rule in matching_rules: < For every rule that matches...
rule = rule.rename() <€ ... returned a renamed rule.

newenv = pygic.environments.Environment(env)
if unify_expr_lists(query, rule.conclusion, new_env):
for result in prove_queries(rule.hypotheses, newenv, ruledb):

yield result

m- - .- .(E) . Qf

How PYGIc WORKS: CODE (SIMPLIFIED)

def prove _query(query, env, ruledb):
if is_true_expr(query):
yield env

else:
matching rules = ruledb.find rules matching(query)

for rule in matching rules:
rule = rule.rename() Extend the
. . . environment.

newenv = pygic.environments.Environment(env)

if unify_expr_lists(query, rule.conclusion, new_env):
for result in prove_queries(rule.hypotheses, newenv, ruledb):

yield result

Try to unify the query with the

conclusion of the rule, which may If the hypotheses in the query can

be proved, yield the environment
that results from the proof.

add bindings in the frames.

How PYGIc WORKS: CODE (SIMPLIFIED)

def prove _query(query, env, ruledb):
if is_true_expr(query):

yield env
else:

matching rules = ruledb.find rules matching(query)
for rule in matching rules:

rule = rule.rename()

newenv = pygic.environments.Environment(env)

if unify_expr_lists(query, rule.conclusion, new_env):
for result in prove_queries(rule.hypotheses, newenv, ruledb):

yield allows us
to continue where yield result

we left off, or to

“backtrack” to a
choice point.

How PYGIc WORKS: CODE (SIMPLIFIED)

def prove_queries(queries, env, ruledb):

If there are no more queries to check, we

if len(queries) == o: < successfully yield the current environment.
yield env
else:
for new_env in prove_query(queries[@], env, ruledb):
for result in prove queries(queries[1:], new_env, ruledb):

yield result

m- - .- .(E) . Qf

How PYGIc WORKS: CODE (SIMPLIFIED)

def prove_queries(queries, env, ruledb):
if len(queries) == @:

yield env Prove the first query and obtain a resulting
else: new environment.

for new_env in prove_query(queries[@], env, ruledb):
for result in prove queries(queries[1:], new_env, ruledb):

yield result Prove the rest of the queries in the new
environment.

.- E) . Qf

OF CcouRrse

TTHEY O, TMe
REVERSED
QWLS WWO?

TIME
REVERSED
OWLS.

IF P \S FALSE,
T WILL 8 SAD.

T DO NOT wWi\sy
TO 8E SAD.

There. Now you can skip 99% of philosophical debates.

http://www.smbc-comics.com/index.php?db=comics&id=2673
http://www.smbc-comics.com/index.php?db=comics&id=2684 67

APPLICATIONS

Declarative programming is useful in database
applications.

For example, if we have a database of student
records, and want to get all the records of
sophomore year students, we run the query

SELECT * FROM STUDENT_DB WHERE YEAR = 2

- -(E) , Qf

APPLICATIONS

Notice that in the query
SELECT * FROM STUDENT_DB WHERE YEAR = 2

all that we have specified are the properties we expect
from our output.

We could, of course, iterate through all the records and

filter out the ones we need, but it is a common enough

operation that it is better to specify what we want from
the output, rather than how we want to get it.

- -(E) , Qf

CONCLUSION

 Under the hood, PyGic matches the query
against all of its rules and facts. It then picks
one, and attempts to unify the query with the
fact (or rule conclusion) by finding a consistent
assignment to the variables in either.

e Declarative programming is useful in
situations where we know what we expect of

the output.
* Preview: Write your own chat client.

- - - () " Qf

