
INTERPRETATION AND SCHEME LISTS 12
COMPUTER SCIENCE 61A

July 26, 2012

1 Calculator Language

We are beginning to dive into the realm of interpreting computer programs. To do so, we
will examine a few new programming languages. The Calculator language, a very simple
language and invented for this class, is the first of these examples.

Our Calculator language (or “Calc”) looks very similar to Python, except it only handles
four arithmetic operations: add, sub, mul, div, and the corresponding symbols (+, -, *,
and /). All of these operators are prefix operators, which means that the operator precedes
the operands that it is operating on.

Here are a few examples of Calculator in action:

calc> 6
6
calc> add(3, 5)
8
calc> mul()
1
calc> add(1, mul(3, sub(3, 7)))
-11

Our goal now is to write an interpreter for the Calculator language. The job of an inter-
preter is, given an expression, perform all the steps necessary to evaluate it. The inter-
preter that we saw in lecture spends most of its time in the read-eval-print-loop (often
called a REPL), which continuously reads a line of input, translates this into an expres-
sion object (we call this parsing the input), evaluates that expression object, and prints the
result. Nearly all interpreters can be organized into this REPL pattern!

1

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 2
We are primarily interested in the E part of REPL, which stands for evaluation.

1.1 Representing and Evaluating Expressions

When we type a line at the Calculator prompt and hit enter, we have just sent an expres-
sion to the interpreter. We can represent an expression as an object:

class Exp(Object):
def __init__(self, operator, operands):

self.operator = operator
self.operands = operands

def __repr__(self):
return "Exp({0}, {1})".format(repr(self.operator),

repr(self.operands)))
def __str__(self):

operand_strs = ", ".join(map(str, self.operands))
return "{0}({1})".format(self.operand, operand_strs)

The most important thing to note is that every Exp is represented by its operator and
operands. Also, another thing to note: the operands can also be Exp objects themselves.
In fact, this representation of an expression is called an expression tree, since the “children”
of the operator are also Exp objects.

For example, if we wanted to represent the Calculator expression add(2, 3), we would
call the Exp constructor as follows: Exp("add", [2, 3]).

1.2 Evaluating Expressions

Our Calculator language is only concerned with two kinds of expressions: numbers, which
are self-evaluating expressions, and call expressions, which involve an operator acting on
some number of arguments, each of which are themselves expressions.

What does it mean for a number to be self-evaluating? If we evaluate an expression that
is a number, the value of the expression (or the result returned by evaluating it) is that
number.

What about evaluating call expressions? We follow this two-step process:

1. Evaluate the operands.

2. Apply the operator to the arguments (the values of the operands).

Using this two-step process, we can interpret any Calculator expression. The first step
will be handled by a function called calc_eval, and the second step will be handled by
a function called calc_apply. It is defined as:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 3
def calc_eval(exp):

if type(exp) in (int, float): # If the expression is a number,
return exp # Return the number.

else:
Evaluate the operands.
arguments = list(map(calc_eval, exp.operands))
Apply the function to the operands.
return calc_apply(exp.operator, arguments)

As you can see, all we have done is follow the rules of evaluation outlined above. If the
expression is a number, return it. Else, evaluate the operands and apply the operator on
the evaluated operands.

How do we apply the operator? We use calc_apply:

def calc_apply(operator, args):
if operator in ("add", "+"):

return sum(args)
if operator in ("sub", "-"):

if len(args) == 0:
raise TypeError(operator + " needs at least 1 arg")

if len(args) == 1:
return -args[0]

return sum(args[0], [-args for args in args[1:]])
if operator in ("mul", "*"):

return reduce(mul, args, 1)
if operator in (’div’, ’/’):

if len(args) != 2:
raise TypeError(operator + ’ requires exactly 2 arguments’)

numer, denom = args
return numer/denom

Depending on what the operator is, we can match it to a corresponding Python call. Each
conditional in the function above corresponds to the application of one operator.

Notice that calc_eval deals with expressions, while calc_apply deals with values.

In general, when you want to add something to the calc language, you will want to edit
one (or both) of calc_eval and calc_apply. Sometimes, it is possible to make changes
in either function to get the same result, but it is important to consider which is more
appropriate to edit. The general idea is:

• If you want to create a special rule for the order that we evaluate the operands of an
expression, you will want to edit calc_eval.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 4
• However, if you want to simply create a new function (with no special rules for the

way it is evaluated), then it is generally better to edit calc_apply instead.

1. How would we construct the Exp object that corresponds to the expression

add(4, 5, mul(3, 2))?

2. We want to allow Calc to perform exponentiation:

>>> a = exp(2, 4)
16
>>> a = **(2, 4)

Assuming that we have modified the parser to understand the new keywords exp
and **, which of the two functions – calc_eval and calc_apply – would we
modify to include this functionality, and how?

3. How many calls to calc_eval and calc_apply are produced by the expressions
below?

(a) 5

(b) mul(5, 6)

(c) mul(5, add(div(4, 1), 6))

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 5
(d) mul(sub(5, 1), add(4, 6))

4. We want to add new functionality that would let us save values in variables:

calc> save(a, 5)
calc> mul(6, a)
30

Assuming that we have already modified the Calc parser to allow words to be operands,
should we modify calc_apply, calc_eval, or both to add this new feature? Why,
and how? (Hint: You may find it useful to keep a global dictionary.)

5. Louis Reasoner, while staying up all night in Soda, modified a line from his code for
the Calc interpreter. In particular, he modified one line from calc_eval:

def calc_eval(exp):
if type(exp) in (int, float):

return exp
if type(exp) == Exp:

The line below was changed.
arguments = exp.operands
return calc_apply(exp.operator, arguments)

Which of the following statements below will not be interpreted correctly?

1. 5

2. add(5, 3)

3. add(3, sub(2, 4))

2 Scheme: Pairs and Lists

The basic data structure in Scheme is the pair. To construct a pair, we use the function
cons:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 6
STk> (cons 3 4)
(3 . 4)

Notice that Scheme represents a pair as the first element and the second element, sepa-
rated with a dot. We can grab the first and the second elements of the list using the car
and cdr function:

STk> (car (cons 3 4))
3
STk> (cdr (cons 3 4))
4

Pairs can be used to construct larger data structures, such as (recursive) lists. In fact,
Scheme is a dialect of Lisp, which is a name derived from “List Processing”. We can
construct a list in many ways. The following expression should seem familiar to you
from your adventures with IRLists and RLists.

STk> (cons 1 (cons 2 (cons 3 ’())))
(1 2 3)

What is a list? Well, a list is a pair whose first element is the first element of the list, and
the second element is the rest of the list. We thus construct a list by first making a pair,
the first element of which is the first element of the list. The second element of this pair is
the rest of this list, so we construct another list. We build another pair whose first element
is now the second element of the entire list. We keep adding elements to the list in this
fashion until we reach the end, when we have no more elements to add and we use the
empty list (represented as ’() or nil).

Notice that above, Scheme did not print a pair back at you. This is because Scheme rec-
ognizes that you are building a list, and displays it as such. You can also build lists using
the list operator:

STk> (list 1 2 3 4)
(1 2 3 4)

or the quote operator:

STk> ’(1 2 3 4)
(1 2 3 4)

As with any other pair, we can still use the function car and cdr:

STk> (car ’(1 2 3 4))
1
STk> (cdr ’(1 2 3 4))
(2 3 4)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 7
We can check if a list is empty using the null? function.

STk> (null? ’(1))
#f
STk> (null? ’())
#t

Note: (car x) is 2, (cdr x) is the list (3 4), and (car (cdr x)) is 3! Well, it is a bit
tiresome to write (car (cdr x)) to get the second element of x. So Scheme, again the
huggable lovable language that it is, provides a nifty shorthand: (cadr x). This reads
“cader”, and means “take the car of the cdr of”. Similarly, you can use (caddr x)
(pronounced “caderder”) to take the car of the cdr of the cdr of the list x, which is 4.
You can mix and match the a and d between the c and r to get the desired element of the
list (up to four a or d).

You can also append two lists together. append takes in any number of lists and outputs a
list containing those lists concatenated together. So, (append (list 3 4) (list 5 6))
returns the list (3 4 5 6).

1. Assume that we have typed in the following definitions:

(define u (cons 2 3))
(define v (list 2 3 4))
(define w (cons 5 6))
(define x (append v (list 2 5 6)))

What do the following expressions evaluate to?

(a) (car u)

(b) (cdr u)

(c) (+ (cdr u) (car w))

(d) (+ (car v) (cadr v))

(e) (cons 3 v)

We can also work with Scheme lists the same way we work with IRLists: treat the first
and the rest of the list separately. For instance, here is the definition of a higher-order
function map that takes in a function and returns a new list that results from applying
that function on to each element of the list:

(define (map fn lst)
(if (null? lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 12: INTERPRETATION AND SCHEME LISTS Page 8
1. Write the function add-one, which takes in a list and returns another list where 1 has

been added to all of the elements.

(define (add-one lst)

2. Write the function num-satisfies that takes in a predicate function and a list, and
returns the number of all the elements that satisfy the predicate.

(define (num-satisfies pred lst)

3. Write the function filter that takes in a predicate function (that returns #t or #f)
and a list, and returns all the elements that satisfy the predicate.

(define (filter pred lst)

4. Write a function remove that takes in an element and a list, and returns a new list
where the element has been removed.

(define (remove elem lst)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

