OOP IMPLEMENTATION, SCHEME

COMPUTER SCIENCE 61A

July 24, 2012

Review: Object-Oriented Programming

In Object-Oriented Programming, we have the following main components:

classes
A “blueprint” of something we want to model. This will include the declaration of
all methods, instance attributes, and class attributes.

instances
An object created from a class. This object has its own state (instance attributes) and
behavior (methods).

So far, we have used Python’s built-in object-oriented syntax in order to define and use
classes. For instance, a Person class could look something like:

class Person (object) :

population = 0 # class var

def = init_ (self, name): # constructor method
self.name = name # instance attribute ’‘name’
Person.population = Person.population + 1

def greet (self): # method ’‘greet’

return "Hi, I'm " + self.name

This week, we will learn how to implement our own object-oriented system, using only
the concepts from this course.

DiscussioN 11: OOP IMPLEMENTATION, SCHEME Page 2
1.1 What’s in a class?

Before we begin implementing classes in our new system, we should ask ourselves: what
do classes need to be able to do? After some thought, we can reduce it to three basic tasks:

get
A class needs to be able to retrieve (get) its stored attributes. This includes class
attributes and methods.
set
A class needs to be able to set class attributes, or create new class attributes.
instantiate

We need to be able to create (instantiate) instances of this class.
We will implement this behavior via the use of a dispatch dictionary:

def make_class (attributes, base_class=None) :
"""Return a new class.

attributes -- class attributes
base_class —-—- a dispatch dictionary representing a class
num
def get_value (name) :
if name in attributes:
return attributes[name]
elif base_class is not None:
return base_class[’get’] (name)
def set_value (name, value):
attributes[name] = value
def new(xargs) :

return init_instance(cls, =xargs)

14 r .

cls = {’'get’: get_value, ’'set’: set_value, new}

return cls

new

The important thing to note is that a class is simply represented as a dictionary that con-
tains three keys: get, set, and new. When we want to get the value of an attribute from
the class, we pass it the get message, which returns to us an internally-defined function
get_value that we can use to get the value of an attribute.

Similarly, we can use set_value to modify an existing attribute within the class or, if it
hasn’t been set yet, create a new instance attribute.

Finally, if we want to actually create an instance, then we pass in the new message, which
returns the new function that calls init_instance:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

Di1sCUSSION 11: OOP IMPLEMENTATION, SCHEME Page 3
def init_instance(cls, =*args):
"""Return a new instance of cls, initialized with args."""

instance = make_instance(cls)
init = cls[’get’] ('_init_ ")
if init:

init (instance, *args)
return instance

As one can see, init_instance checks to see if the class has the __init_ method
defined, and if it does, to call it on the newly-created instance.

As a concrete example, let’s convert the Person Python class definition into the equiva-
lent definition within our object-oriented system:

def make_person_class():

def = init_ (self, name):

self[’set’] ("name’, name)

Person[’set’] ('population’, Person|[’get’] ('population’) + 1)
def greet (self):

return "Hi, I'm " + self[’get’] ('name’)
attrs = {’population’: 0, ’'__init_ ’": _ init_ ,

"greet’ : greet}

Person = make_class (attrs)
return Person

>>> Person = make_person_class/()
>>> Person[’get’] ('population’)

0

>>> joy = Person[’'new’] ('Joy’)
>>> Person[’get’] ('population’)
1

The above interaction is effectively equivalent to the following interaction:

>>> Person.population
0

>>> joy = Person ('’ joy’)
>>> Person.population
1

1.2 What is an object?

What are the fundamental behaviors of objects that we need to capture in our Object-
Oriented implementation?

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 11: OOP IMPLEMENTATION, SCHEME Page 4
get
An object needs to be able to retrieve (get) its stored attributes. This includes in-
stance/class attributes, in addition to methods.

set

An object needs to be able to modify the value of previously-set attributes, or create
new instance attributes.

Once again, we will implement this behavior via a dispatch dictionary:

def make_instance (cls):
"""Return a new object instance."""
def get_value (name) :
if name in attributes:
return attributes[name]
else:
value = cls[’get’] (name)
return bind _method(value, instance)
def set value (name, value) :

attributes[name] = value
attributes = {}
instance = {’get’: get_value, ’'set’: set_value}

return instance

An instance is simply a dictionary of two keys: get and set. When we want to get the
value of an attribute from an instance, we pass it the get message, which returns to us an
internally-defined function get_value that we can use.

Similarly, we can use set_value to modify an existing attribute within the instance or, if
it hasn’t been set yet, create a new instance attribute.

Here’s a comparison between the Python object-oriented system and our own system:

>>> # Our way

>>> joy = Person|[’'new’] (' joy’)
>>> Joy[’'get’] (' name’)

rjoyl

>>> # Python’s way

>>> joy = Person ('’ joy’)
>>> joy.name

rjoy/

1. In which attributes dictionary are methods stored? Are they stored in the instance
dispatch-dictionary, or the class dispatch-dictionary?

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUSSION 11: OOP IMPLEMENTATION, SCHEME

Page 5

Solution: The class dispatch-dictionary.

2. Modity the following Person class implementation to add a new method nom that

returns the same three strings in order: "om", "nom", and "nom!":

>>> eric = Person[’'new’] ('eric’)
>>> eric[’get’] ('nom’) ()

14 Oml

>>> eric[’get’] ("nom’) ()

"nom’

>>> eric[’get’] ('nom’) ()

"nom!”’
>>> eric[’get’] ("nom’) ()
14 oml

def make_person_class () :
def init_ (self, name):
self[’set’] ("name’, name)

Person[’set’] ('population’, Person[’get’] ('population’)

def greet (self):
return "Hi, I'm " + self[’get’] ('name’)
"m" YOUR CODE HERE """

Solution:

def make_person_class () :
def @ init_ (self, name):
self[’set’] ("name’, name)

def greet (self):

return "Hi, I'm " + self[’get’] ('name’)
def nom(self) :

if self[’get’] ('nom_count’) % 3 == 0:
val = ’'om’

elif self[’get’] (nom_count’) % 3 == 1
val = ’"nom’

else:
val = "nom!’

return val
attrs = {/_init__ ’: _ _init_ , ’'greet’: greet,

Person[’set’] ('population’, Person[’get’] ("population

self[’set’] ('nom_count’, self[’get’] ('nom_count’)

+ 1

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

")

+ 1)

+ 1)

DiscUSSION 11: OOP IMPLEMENTATION, SCHEME Page 6

"nom’ : nom, ’'population’: 0, 'nom_count’: 0}
Person = make_class (attrs)
return Person

3. What if we modified the get_value function inside of make_instance to not call
bind_method,i.e. make_instance becomes:

def make_instance(cls):
"""Return a new object instance."""
def get_value (name) :
if name in attributes:
return attributes[name]
else:
value = cls[’get’] (name)
return bind method(value, instance) # remove this!
return value
def set_value (name, value):

attributes[name] = value
attributes = {}
instance = {’get’: get_value, ’'set’: set_value}

return instance

What changes? In particular, what happens in the following interaction?

>>> bruce = Person[’'new’] ('Bruce’)
>>> bruce[’get’] ('greet’) ()
7

Solution: No methods are bound to instances, so, you need to always pass in the
self argument whenever calling a method. The above line will error:

>>> bruce[’get’] ('greet’) ()
TypeError: greet () takes exactly 1 argument (0 given)
To correctly call the greet method, we need to pass in the bruce instance:

>>> bruce[’get’] ('greet’) (bruce)
"Hi, I'm Bruce"

4. Translate the Account Python class definition to an equivalent definition using our
object-oriented system:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

Di1SCUSSION 11: OOP IMPLEMENTATION, SCHEME Page 7
class Account:

tax = 0.01

def @ init_ (self, account_holder):
self.holder = account_holder
self.balance = 0

def deposit (self, amt):
new_balance = self.balance + amt
self.balance = new_balance

def withdraw(self, amt):
if amt > self.balance:
return "Not enough funds."
else:
self.balance —-= amt
return amt x Account.tax

def make_account_class{() :
""" YOUR CODE HERE """

Solution:
def make_account_class():
def = init_ (self, account_holder):
self[’set’] ("holder’, account_holder)
self[’set’] ("balance’, 0)
def deposit(self, amt):
new_balance = self[’get’] ('balance’) + amt
self[’set’] ("balance’, new_balance)
def withdraw(self, amt):
if amt > self[’get’] ("balance’):
return "Not enough funds."
else:
self([’set’] ("balance’, self[’get’] ("balance’) - a
return amt x self[’get’] ('tax’)
attrs = {/_init_ ’: _ _init_ , ’'deposit’: deposit,
"withdraw’ : withdraw, "tax’: 0.01}
return make_class (attrs)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscuUssION 11: OOP IMPLEMENTATION, SCHEME Page 8
1.3 Inheritance, Done Our Way

To finish things off, let’s examine how inheritance is handled within this object-oriented
system. In Python’s object-oriented system, inheritance worked in the following way. Say
we have class A, and class B is a subclass of A. When we access an attribute attr of an
instance of B, if at t r isn’t found within the class B, then we look in the parent class A for
the attribute att r, and so on if A itself is a subclass of another class.

As a concrete example, let’s define the TA class that behaves just like a Person, but only
responds to every-other invocation of the greet method (this delay is presumably be-
cause TA’s stay up late preparing discussion notes):

class Person(object) :
population = 0
def = init_ (self, name):
self.name = name
Person.population = Person.population + 1
def greet (self):
return "Hi, I'm " + self.name

class TA (Person) :

def = init_ (self, name):
Person._ _init_ (self, name)
self.greet_count = 0

def greet (self):

if self.greet_count % 2 == 1:
val = Person.greet (self)
else:
val = ’"...hm...’

self.greet_count += 1
return val

>>> albert = TA('’Albert’)
>>> albert.greet ()

"o hm. 0"

>>> albert.greet ()

"Hi, I'm Albert"

>>> albert.greet ()
"...hm..."

To use inheritance in our own object system, when we define the TA class, we will also
pass in the Person class as the base_class argument to make_class:

def make_ta_class (parentclass):

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUSSION 11: OOP IMPLEMENTATION, SCHEME

Page 9
def = init_ (self, name):
parentclass[’get’] ('__init_ ') (self, name)
self[’set’] ("greet_count’, 0)
def greet (self):
if self([’get’] ('greet_count’) % 2 == 1:
val = parentclass[’get’] ('greet’) (self)
else:
val = "...hm..."

self[’set’] ("greet_count’, self[’get’] ("greet_count’) + 1)
return val

attrs = {’/__init_ ’: _ _init_, ’'greet’: greet}
return make_class (attrs, parentclass)

1. Using our object-oriented system, define the CS61AStudent class that behaves just

like a Person, but repeats their greet phrase twice in a row (presumably because of
all the coffee and all-nighters being pulled):

>>> fry = CS61lAStudent ('Fry’)
>>> fry['get’] ('greet’) ()
"Hi, I'm Fry Hi, I'm Fry"

def make_CS61AStudent_class (parentclass) :
""" YOUR CODE HERE """

Solution:

def make_CS61AStudent_class (parentclass) :
def = init_ (self, name):
parentclass[’get’] ('__init_ ') (self, name)
def greet (self):
val = parentclass[’get’] ('greet’) ()
return val + " " + wval
attrs = {’/__init_ ’: _ _init_, ’'greet’: greet}
return make_class (attrs, parentclass)

2. What if we changed the last few lines of make_ta_class to instead be:

def make_ta_class (parentclass):
def _ init_ (self, name):
parentclass[’get’] ('_init_ ') (self, name)
self[’set’] ("greet_count’, 0)
def greet (self):
if self([’get’] ('greet_count’) % 2 == 1:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUSSION 11: OOP IMPLEMENTATION, SCHEME Page 10

val = parentclass[’get’] ('greet’) (self)
else:
val = "...hm..."
self[’set’] ("greet_count’, self[’get’] ('greet_count’)
return val
attrs = {/_init_ ’: __init_ , ’'greet’: greet}
parentclass = make_person_class|() # Added this line
return make_class (attrs, parentclass)

+ 1)

What would change about the ta_class, if anything? In particular, what would be

following interactions print out?

>>> Person = make_person_class/()
>>> TA = make_ta_class ()
>>> joe = Person[’new’] (' Joe’)
>>> Person[’get’] ('population’)
- # value?
>>> TA['get’] ("population’)

value?

Solution: Almost everything would still work. However, the TA class would have
its own separate Person class variables:

>>> Person = make_person_class|()
>>> TA = make_ta_class()

>>> "joe’ = Person[’'new’] ('Joe’)
>>> Person[’get’] ('population’)
1 # value?

>>> TA['get’] (' population’)

0 # value?

3. What if I modified the __init__method of the Person implementation to be:

def make_person_class () :

def init_ (self, name):

self[’set’] ("name’, name)

self[’set’] ('population’,

self["get’] ('population’) + 1) # changed

def greet (self):

return "Hi, I'm " + self[’get’] ('name’)
attrs = {’population’: 0, ’'__init_ ’": _ init_ ,

"greet’ : greet}

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUSSION 11: OOP IMPLEMENTATION, SCHEME

Page 11

Person = make_class (attrs)
return Person

What, if anything, will change? In particular, what will the following interactions

return?
>>> Person = make_person_class|()
>>> cecilia = Person[’new’] (‘cecilia’)

>>> tajel = Person|[’'new’] ("tajel’)
>>> Person[’get’] ('population’)

>>> cecilia[’get’] ('population’)

>>> tajel[’'get’] ('population’)

Solution:

>>> Person = make_person_class|()

>>> cecilia = Person[’new’] (‘cecilia’)
>>> tajel = Person[’new’] ('tajel’)

>>> Person[’get’] ('population’)

0

>>> cecilia[’get’] ('population’)

1

>>> tajel[’get’] ('population’)

1

The Person’s population class attribute will always be 0.

The Scheme Language

In the next part of the course, we will be working with the Scheme programming lan-
guage. In addition to learning how to write Scheme programs, we will eventually write a

Scheme interpreter in Project 4.

Scheme is a dialect of the Lisp programming language, a language dating back to 1958.
The popularity of Scheme within the programming language community stems from its
simplicity — in fact, previous versions of CS 61A were taught in the Scheme language.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscussiON 11: OOP IMPLEMENTATION, SCHEME Page 12
2.1 The Scheme Interpreter

Like Python, Scheme features an interpreter where you can have an interactive session
On the 61A class accounts, you can start a Scheme interactive session by running the stk
program:

star [l6] =~ # stk

Welcome to the STk interpreter version 4.0.1-ucbl.3.6

Copyright (c) 1993-1999 Erick Gallesio

Modifications by UCB EECS Instructional Support Group
STk>

We can ask it to evaluate a few simple arithmetic expressions:

STk> 42

42

STk> (+ 1 2)

3

STk> (x 2 (- 5 3) (+ 3 1 0))
16

In the last line, we see that the arithmetic functions can take any number of arguments.

2.2 An Example Scheme Program

Let’s take a look at the following Scheme code:

(define (factorial n)
(if (= n 1)
n
(» n (factorial (- n 1)))))

Here, we have defined a function factorial that, given an argument n, computes the
factorial of n. We can call it in the same way we called the arithmetic functions:

STk> (factorial 3)

6

STk> (factorial 4)

24

STk> (factorial (+ 2 3))
120

As you can see, without explicitly going over the Scheme syntax we can look at the above
factorial definition and see the similarities to the equivalent Python definition:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUsSION 11: OOP IMPLEMENTATION, SCHEME Page 13
def factorial(n):
if n ==
return n
else:
return n x factorial(n - 1)

2.3 My Little Scheme Exercises

1. What will Scheme print? For the following expressioins, write down what Scheme
will display.
STk> (+ 1 2 3 4)
STk> (factorial (+ (factorial 2) (x (- 2 1) 1)))
STk> (+ (x (= 5 1) 4 2) 3)

STk> (> 44 2)

STk> (and #t #t #£)

STk> (or (= 3 5) #f (> 2 3) (<=5 5))
Solution:
STk> (+ 1 2 3 4)
10
STk> (factorial (+ (factorial 2) (x (= 2 1) 1)))
6
STk> (+ (« (= 5 1) 4 2) 3)
35
STk> (> 44 2)
#t
STk> (and #t #t #f)
#f
STk> (or (= 3 5) #f (> 2 3) (<= 5 5))
#t

2. Translate the following Scheme functions into its equivalent Python function defini-
tion:

a.)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUsSION 11: OOP IMPLEMENTATION, SCHEME Page 14
(define (sum num)
(1f (= num 0)
num
(+ num (sum (= num 1)))))

def sum(num) :

Solution:

def sum(num) :
if num ==
return num
else:
return num + sum(num - 1)

b.)

(define (fib n)
(if (or (= n 0) (=n 1))
n
(+ (fib (- n 1)) (fib (- n 2)))))

def fib(n):

Solution:

def fib(n):
if (n == 0) or (n == 1):
return n
else:
return fib(n - 1) + fib(n - 2)

2.4 Types of Scheme Expressions

We can separate Scheme expressions into three different groups: primitive expressions,
call expressions, and special forms.

A primitive expression include “simple” things like numbers, variables, and strings.
Note that in Scheme, #t and #f stand for True and False respectively. In the last line
below, we see how Scheme displays function values:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 11: OOP IMPLEMENTATION, SCHEME Page 15
STk> 100

100

STk> "hi there"

"hi there"

STk> #t

#t

STk> #f

#£f

STk> +

#[closure arglist=args 196920]

A call expression is an expression that takes on the form: (<function name> <argl>
<argN>). You can call any user-defined or built-in function this way:

STk> (+ 4 3)

7

STk> (/ (= 22 2) (+ 2 (x 4 2)))
2

STk> (factorial 3)

6

Finally, special forms are language constructs that allow for features such as function
definitions, conditional expressions, variable assignment, and quoting. We’ve already
seen the first two special forms already, and we’ll get to the others shortly.

2.5 More Scheme Practice

1. Given the following Python session, translate each line into equivalent Scheme code:

>>> 1 4+ 2 + 3
>>> 2 « ((3 + 4) - 8)
>>> def maxfn(a, b):
if a > b:
return a
else:
. return b
>>> maxfn (5, 2)
>>> maxfn (3, maxfn (5, maxfn (7, 9001)))

Solution:

STk> (+ 1 2 3) ; or (+ 1 (+ 2 3))

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DiscUSSION 11: OOP IMPLEMENTATION, SCHEME Page 16

STk> (* 2 (- (+ 3 4) 8))
STk> (define (maxfn a b)
(if (> a b)

a
b))

STk> (maxfn 5 2)
STk> (maxfn 3 (maxfn 5 (maxfn 7 9001)))

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

