
NONLOCAL ASSIGNMENT, LOCAL STATE 10
COMPUTER SCIENCE 61A

July 19, 2012

1 Looking Back

Before we move into new syntax, let’s review a familar topic: functions. We’ve previously
introduced two categories of functions:

1. Pure: a function that, when called, produces no effects other than returning a value

2. Non-Pure: a function that, when called, produces some side-effect, such as printing
to the screen.

During the first few weeks of this course, the functions you have written have been, for
the most part, pure functions. For example, the sum procedure is a pure function:

def sum(sequence):
total = 0
for elem in sequence:

total += elem
return total

The only non-pure function we’ve defined dealt with print. Namely, anytime we saw
the print statement, we immediately knew that the function was non-pure.

Let’s define another attribute of pure functions: referentially transparent. An expression is
referentially transparent if it can be replaced with its value, without any change in program
behavior. So for example,

1



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 2
add(sum((1, 2, 3)), square(4))

is exactly equivalent to:

add(6, square(4))

where we replaced square((1,2,3)) with 6. And since there is no change in program
behavior (we still would get 22), sum is considered referentially transparent.

Earlier, we were vague when we said that pure functions had no ”side-effects”, but now
we can more precisely state the properties of a pure function. A pure function is refer-
entially transparent, and cannot rely on state – that is, given the same arguments, a pure
function will always return the same output. In addition, pure functions cannot change
state or produce observable side effects (such as printing to the screen).

We’ve already seen mutable data structures – structures that can change their state as a
program runs. Let’s now look at a different way to mutate state: the nonlocal keyword.

2 Nonlocal Assignment

Say I wanted to define a make counter function that, given a number k, returns a func-
tion that repeatedly increments (and returns) k:

>>> c1 = make_counter(0)
>>> c1()
0
>>> c1()
1

In addition, I’d like to be able to have separate counters, each keeping track of their own
state:

>>> c1()
2
>>> c2 = make_counter(42)
>>> c2()
42
>>> c3()
43
>>> c1()
3

Our first attempt could look something like this:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 3
def make_counter(k):

def counter():
toreturn = k
k = k + 1
return toreturn

return counter

>>> counter = make_counter(61)
>>> counter()
UnboundLocalError: local variable ’k’ referenced before assignment

Wait, what? That’s an extremely cryptic error message.

Here is what’s happening – when Python executes the counter procedure, it sees the
line

...
k = k + 1
return toreturn
...

Python does the same thing every time it sees assignment – it will create a new variable
in the current frame to store whatever is on the right side. So Python will try to create a k
variable in the frame. But it realizes something is amiss, because in the previous line, we
said:

...
toreturn = k
k = k + 1
...

We attempted to access k in the previous line. Even though we meant to refer to the outer
k variable, Python doesn’t know that. In other words, the above error scenario is similar
to:

>>> def foo():
... x = y + 4 # y hasn’t been defined yet!
... y = 7
... return x + y

When dealing with assignment, Python will only focus on the current frame (this is in
contrast to how Python handles variable lookups). When Python sees an assignment
statement:

1. If the variable exists in the current frame, then Python will update it.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 4
2. Otherwise, it will create a new variable in the current frame and set it to the given

value.

Unlike when we’re looking up variables, Python won’t normally follow the frame’s par-
ent pointers when updating a variable. Luckily, Python has a special keyword that forces
Python to do this:

def make_counter(k):
def counter():

nonlocal k
toreturn = k
k = k + 1
return k

return counter

As Jon would say, ”Awesome!”

The nonlocal statement tells Python that the listed variable is in some parent frame,
and that assignment to a nonlocal variable will re-bind that variable’s value (instead of
creating a new variable in the current frame). nonlocal will follow frame after frame
until it finds the first instance of the varible that needs re-binding.

There is one caveat: nonlocal will not go all the way back to the global frame. It will
jump back frames until it hits the global frame, and then stop. Thus, you can not use
nonlocal to modify a variable defined in the global frame while you’re in a function’s
local frame1.

2.1 Rules for nonlocal

1. The nonlocal variable must exist in the environment, but not in the global frame.
The variable will be looked up in the parent frames all the way up to, but excluding,
the global frame. If it cannot be found, then Python will throw an error.

2. Once a variable is declared nonlocal within a block, any attempt to modify that
variable will trace back through frames until the variable is found, and then that
variable’s value will be changed.

3. A variable declared nonlocal cannot already exist in the current frame (either as a
local variable or local parameter).

1We have another keyword for re-binding variables in the global frame: global. But we’ll get to this soon.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 5

3 A Word About State

If we look back at the make counter function, there’s something pretty awesome going
on – the function is keeping track of something (in this case, the last phrase it was passed).
This is something we’ve talked about before. State is the idea that our programs can
change or mutate, an idea central to the notion of Object Oriented Programming. We had
objects with state, like Banks remembering the Accounts they controlled, or Pokémon
remembering their names. As make delayed repeater has shown us, functions can
have state too.

We can create persistent state for functions. The variables that represent the persistent
state are considered “local” because only nested functions that reference the state can
access them.

Let’s practice a little bit with nonlocal and state:

1. What Would Python Print? For the following exercises, write down what Python
would print. If an error occurs, just write ’Error’, and briefly describe the error. Hint:
Drawing the environment diagram might help.

a)

>>> name = ’rose’
>>> def my_func():
... name = ’martha’
... return None
>>> my_func()
>>> name
________ ?

Solution:

rose

b)

>>> def abra(age):
... def get_name():
... return name
... name = ’ash’
... def kadabra(name):
... def alakazam(level):
... nonlocal name
... name = ’misty’

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 6
... return name
... return alakazam
... return kadabra, get_name
>>> my_pokemon, get_name = abra(12)
>>> my_pokemon(’sleepy’)(15)
________ ?
>>> get_name()
________ ?

Solution:

>>> my_pokemon(’sleepy’)(15)
misty
>>> get_name()
ash

c)

>>> ultimate_answer = 42
>>> def ultimate_machine():
... nonlocal ultimate_answer
... ultimate_answer = ’nope!’
... return ultimate_answer
>>> ultimate_machine()
________ ?
>>> ultimate_answer
________ ?

Solution:

>>> ultimate_machine()
SyntaxError: no binding for nonlocal ’ultimate_answer’ found.

(In fact, the program crashes right after you finish defining
ultimate_machine!)

>>> ultimate_answer
42

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 7

4 More Environment Diagram Practice

Draw the environment diagrams for the following questions, and use the diagrams to
determine the responses of the interpreters:

1. def boring(x):
def why(y):

x = y
why(5)
return x

def interesting(x):
def because(y):

nonlocal x
x = y

because(5)
return x

>>> interesting(3)
________ ?
>>> boring(3)
________ ?

Solution:

>>> interesting(3)
5
>>> boring(3)
3

2. def f(t):
def g(t):

def h():
nonlocal t
t = t + 1

return h, lambda: t
h, gt = g(0)
return h, gt, lambda: t

>>> h, gt, ft = f(0)
>>> ft(), gt()

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 8
________ ?
>>> h()
>>> ft(), gt()
________ ?

Solution:

>>> h, gt, ft = f(0)
>>> ft(), gt()
0 0
>>> h()
>>> ft(), gt()
0 1

3. Define the make delayed repeater procedure that returns a function which al-
ways returns the previous argument it was called with. The first time you call the
function, it should just return the string ’...’.

>>> goo = make_delayed_repeater()
>>> goo(’hi there’)
’...’
>>> goo(’i like chocolate milk’)
’hi there’
>>> goo(’stop repeating what i say’)
’i like chocolate milk’

def make_delayed_repeater():

Solution:

last_phrase = ’...’
def repeater(thing):

nonlocal last_phrase
toreturn = last_phrase
last_phrase = thing
return toreturn

return repeater

4. We can represent numerical sequences as a function of one argument (taking in the
index). For example, here is the nth even function that returns the nth even number:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu



DISCUSSION 10: NONLOCAL ASSIGNMENT, LOCAL STATE Page 9
def nth_even(n):

""" Return the n-th even number. """
return 2 * n

We would like to have a function generate evens that sequentially returns the even
numbers, one by one:

>>> generate_evens = make_seq_generator(nth_even)
>>> for i in range(4):
... print(generate_evens())
0
2
4
6

Define the make seq generator function that, given a sequence function fn, re-
turns a new function that returns the elements of the sequence one at a time (as in the
above example).

def make_seq_generator(seq_fn):

Solution:

cur_idx = 0
def seq_generator():

nonlocal cur_idx
result = seq_fn(cur_idx)
cur_idx += 1
return result

return seq_generator

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu


