Lecture #15: OOP

Public Service Announcement: Hackers@Berkeley will be hosting a
HackJam this Saturday—

o Low-pressure hackathon for both experienced makers and newbies.
o Work together, eat food, and

o Hack something together in just 12 hours.

o Workshops to help you make something cool.

e Judges, prizes, and most importantly - food.

® RSVP by joining the Facebook event page:
https://wuw.facebook.com/events/1448019312098352/

Guerrilla Section #2: Extra groupwork-based section on mastering
Recursion. Sunday (March 2nd) at 4pm in 271 Soda (cardkey entry).
Check Piazza for details.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 1

Extending the Mutable Objects: Classes

e We've seen a variety of builtin mutable types (sets, dicts, lists).

e ... And a general way of constructing hew ones (functions referenc-
ing nonlocal variables).

e But in actual practice, we use a different way to construct new
types—syntax that leads to clearer programs that are more con-
venient to read and maintain.

e The Python class statement defines new classes or types, creating
new, vaguely dictionary-like varieties of object.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 2

Simple Classes: Bank Account

class Account: # Type name
constructor method
def __init__(self, initial_balance):

>>> mine = Account(1000)
>>> mine.deposit (100)
>>> mine.balance()

1100

>>> mine.withdraw(200)
>>> mine.balance()

900

self._balance = initial_balance

def balance(self): # instance method
return self._balance # instance variable

def deposit(self, amount):
if amount < 0:
raise ValueError("negative deposit")
self._balance += amount

def withdraw(self, amount):
if 0 <= amount <= self.__balance:
self._balance -= amount
else: raise ValueError("bad withdrawal")

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 3

Class Concepts

o Classes beget instances, created by "calling” the class: Account(1000).

e Each such Account object (instance) contains attributes, accessed
using object.attribute notation.

e The defs inside classes define function-valued attributes called meth-
ods (full names: Account.balance, etc.) Each object has a copy.

e A call mine.deposit(100) is essentially Account.deposit(mine, 100).

e By convention, we therefore call the first argument of a method
something like "self" to indicate that it is the object from which we
got the method.

e When an object is created, the special __init__ method is called
first.

e Each Account object has other attributes (_balance), which we cre-
ate by assignment, again using dot notation.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 4

Philosophy

e Just as def defines functions and allows us to extend Python with
new operations, class defines types and allows us to extend Python
with new kinds of data.

e What do we want out of a class?

- A way of defining named new types of data.
- A means of defining and accessing state for these objects.

- A means of defining and using operations specific to these ob-
jects.

- In particular, an operation for initializing the state of an object.
- A means of creating new objects.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 5

Applied Philosophy

e The Account type illustrates how we do each of these

class Account: Define named new type

def __init__(self, initial_balance): How to initialize
self._balance = initial_balance Create/modify state

def balance(self):
return self._balance Access state of an Account

myAccount = Account (1000)
print (myAccount.balance())

Create a new Account object,
Operate on an Account object.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 6

Define new operation on Accounts

https://www.facebook.com/events/1448019312098352/

Class Attributes

j——

e Things like _balance, __init
stances of classes.

and deposit are attributes of in-

e Sometimes, a quantity applies to a class type as a whole, not a spe-
cific instance.

o For example, with Accounts, you might want to keep track of the
total amount deposited from all Accounts.

e This is an example of a class attribute.

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 7

Class Attributes in Python

class Account:
Define/initialize a class attribute
def __init__(self, initial_balance):

self._balance = initial_balance

_total_deposits = 0

Account._total_deposits += initial_balance # Use the class name
def deposit(self, amount):

self._balance += amount

Account._total_deposits += amount

Ostaticmethod
def total_deposits(): # Define a class method.
return Account._total_deposits

>>> acctl = Account(1000)
>>> acct2 = Account (10000)
>>> acctl.deposit(300)

>>> Account.total_deposits()
11300

>>> acctl.total_deposits()
11300

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 8

Modeling Attributes in Python

o Unlike C++ or Java, Python takes a very dynamic approach.
e Classes and class instances behave rather like environment frames.

def Account:

-total_deposits = 0 _total_deposits: 11300
. _init_:
def __init__(...): Account: — » balance
self._balance = ... deposit
Account._total_deposits = ... withdraw:

acctl = Account(1000)
acct2 = Account(10000)

; acctl:
acctl.deposit(300)

e Curved boxes are objects.

acct2: _balance:

e Flat-bottomed boxes are class
objects.

o 'x.y'"t look for'y' starting at 'x’

Last modified: Tue Mar 18 16:17:53 2014

CS61A: Lecture #15 9

10000

Assigning to Attributes

e Assighing to an attribute of an object (including a class) is like as-
signing to a local variable: it creates a hew binding for that attribute
in the object selected from (i.e., referenced by the expression on
the left of the dot).

>>> def Value:
value = 0 Value:

>>> vall = Value()

>>> val2 = Value()

>>> val2.value = 3

>>> vall.value vall:

>>> Value.value

>>> val2.value

Last modified: Tue Mar 18 16:17:53 2014

CS61A: Lecture #15 10

Methods

e Consider

>>> def Foo:

def set(self, x):
- self.value = x
>>> aFoo = Foo()
>>> aFoo.set(13)
>>> aFoo.value
13
>>> aFoo.set
<bound method Foo.set of ...>

The first parameter of set is aFoo.

Selection of attributes from objects (other than classes) that were
defined as functions in the class does something to those attributes
so that they take one fewer parameters: first parameter is bound
to the selected-from object.

Effect of selecting aFoo.set is like calling partial_bind(aFoo, Foo.set),
where

def partial_bind(obj, func): return lambda x: func(obj, x)

Last modified: Tue Mar 18 16:17:53 2014 CS61A: Lecture #15 11

	Lecture #15: OOP
	Extending the Mutable Objects: Classes
	Simple Classes: Bank Account
	Class Concepts
	Philosophy
	Applied Philosophy
	Class Attributes
	Class Attributes in Python
	Modeling Attributes in Python
	Assigning to Attributes
	Methods

