
Lecture 36: MapReduce

[Adapted from slides by John DeNero and
http://research.google.com/archive/mapreduce-osdi04-slides]

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 1

Frameworks

MapReduce is a framework for batch processing of Big Data:

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset and results
aren’t consumed until processing completes

• Big Data: A buzzword used to describe datasets so large that they
reveal facts about the world via statistical analysis

The big ideas that underly MapReduce:

• Datasets are too big to be stored or analyzed on one machine.

• When using multiple machines, systems issues abound.

• Pure functions enable an abstraction barrier between data process-
ing logic and distributed system administration.

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 2

Systems

Systems research enables the development of applications by defining
and implementing abstractions:

• Operating systems provide a stable, consistent interface to unreli-
able, inconsistent hardware

• Networks provide a simple, robust data transfer interface to con-
stantly evolving communications infrastructure

• Databases provide a declarative interface to software that stores
and retrieves information efficiently

• Distributed systems provide a single-entity-level interface to a clus-
ter of multiple machines

Unifying property of effective systems:

Hide complexity, but retain flexibility

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 3

Unix Pipes as a Framework

(Review) Unix embeds a framework for composing processes:

• Each process has a standard input stream (of characters) and a
standard output stream (plus a standard error stream “on the side.”)

• Programming languages provide functions to read and write to these
streams, just as for ordinary files.

• In Python, these streams are called sys.stdin, sys.stdout, and
sys.stderr.

• They are objects whose interface provides read and write opera-
tions and iterators.

• The OS allows one to string together (compose) sequences of pro-
grams into a pipeline, enabled by the common stream interface. E.g.,
(from lecture 9):

tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | sort | uniq -c | \

sort -n -r -k 1,1 | sed 20q

prints the 20 most frequent words in FILE, with their counts.

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 4

MapReduce Idea

A MapReduce job takes a mapper program and a reducer program from
a user and applies them to a set of data.

• Map phase: Apply a mapper function to inputs, emitting a set of
intermediate key-value pairs.

• Reduce phase: For each distinct intermediate key, apply a reducer
function to accumulate all the values with that key. Return a list of
accumulated values for the key.

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 5

Example I: Counting Occurrences

Counting occurrences of words in a large collection of documents:

• Input to map operation: pairs (name of document, text of document).

• Output from map operation: pairs (word, 1) (the 1 represents a
count).

• Input to reduce operation: (word, iterator over all counts for

that word)

• Output from reduce operation: sum of all counts for one word.

• (Could make things more efficient by having the map operation do
some counting and return just one count for each distinct word).

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 6

Abstract Execution Model

Home Prev Next 7

Execution

Execution http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-...

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 7

Parallel Execution

Home Prev Next 8

Parallel Execution

Parallel Execution http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-...

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 8

Example II: Distributed Grep

• Input to map: Pairs (name of document, text of document).

• Output from map: pairs (name of document, line matching target

pattern)

• Output from reduce: the list of matching lines from each document.

• (Reduce is trivial here; we’re just using map).

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 9

Example III: Reverse Web-Link Graph

• Input to map: Pairs (source URL, webpage content of URL)

• Output from map: Pairs (target URL, source URL) for each hy-
perlink target on the input webpage.

• Output from reduce: (target URL, list of source URLs).

• The work here is mostly in gathering up and sorting the results of
map.

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 10

Inverted Index

• Input to map: Pairs (document name, document contents).

• Output from map: Pairs (word from document, document name)

• Output from reduce: for each word, list of all documents it came
from.

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 11

Scale

Way back in August 2004, MapReduce at Google processed this much
data in using MapReduce:

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 12

What the Framework Provides

• Fault tolerance: A machine or hard drive might crash.

– The MapReduce framework automatically re-runs failed tasks.

• Speed: Some machine might be slow because it’s overloaded or fail-
ing.

– The framework can run multiple copies of a task and keep the
result of the one that finishes first.

• Network locality: Data transfer is expensive.

– The framework tries to schedule map tasks on the machines that
hold the data to be processed.

• Monitoring: Will my job finish before dinner?!?

– The framework provides a web-based interface describing jobs.

Last modified: Wed Apr 18 15:59:28 2012 CS61A: Lecture #36 13

	Lecture 36: MapReduce
	Frameworks
	Systems
	Unix Pipes as a Framework
	MapReduce Idea
	Example I: Counting Occurrences
	Abstract Execution Model
	Parallel Execution
	Example II: Distributed Grep
	Example III: Reverse Web-Link Graph
	Inverted Index
	Scale
	What the Framework Provides

