
Lecture 35: Streams and Concurrency

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 1

Aside: Threads and Processes

• Multiprocessing in general was out of the mainstream of program-
ming practice for decades.

• As a result, it is packaged in a distressing variety of ways with ter-
minology to match.

• The terms thread, process, and light-weight process all refer to
kinds of logically or physically concurrent computations.

– Processes are generally “heavy weight” objects that tend to be
isolated from each other, communicating best through special-
ized data structures or I/O.

– Threads are “lighter-weight” objects that generally share mem-
ory and processing resources with each other. They tend to have
various arcane restrictions on what they can do in parallel with
each other, and are often more about logical separation of func-
tion than parallelism.

– The less said about light-weight processes, the better.

• Python provides both, with “processes” generally intended for actual
parallel computation, and thread often used for “parallel waiting.”

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 2

Futures

• We’ve seen lazy values: expressions that do not get evaluated until
their value is actually needed.

• A simple extension to this idea is the future:

An expression that gets evaluated while the requesting process
proceeds concurrently, and only later comes back to pick up the
value.

• Full Scheme provides futures among its builtin features. Python
provides them in its library.

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 3

Basics of Futures in Python: concurrent.futures

• An object of type Future (in concurrent.futures) is created by an
object called an Executors from a function and some arguments.

• It executes the function (in parallel), and returns the result (or
exception) when its .result() method is called.

• Its .exception() method returns the exception that ended compu-
tation (or None).

• Both methods take an optional “timeout” parameter that limits the
time one spends waiting for a result.

• The builtin executors that create future are ThreadPoolExecutor,
which creates a future out of a thread, and a ProcessPoolExecutor,
which creates a future out of a process.

• Unfortunately, considerations of when to use which depend on the
OS and on the application: threads if you really need to share data
in memory, and processes if you need isolation and concurrency.

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 4

Example of Futures (I)

From the Python 3 documentation (adapted):

NUMBERS = [112272535095293, 112582705942171, 112272535095293,

115280095190773, 115797848077099, 1099726899285419]

def is_prime(n):

"""True iff non-negative integer N is prime."""

if n % 2 == 0:

return False

sqrt_n = int(math.floor(math.sqrt(n)))

for i in range(3, sqrt_n + 1, 2):

if n % i == 0:

return False

return True

def find_primes():

for number in NUMBERS:

print(number, ’is prime:’ is_prime(number))

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 5

Parallelizing Example (I)

• As written, we check the numbers in sequence. No need in principal.

def find_primes():

executor = concurrent.futures.ProcessPoolExecutor()

Create a future for testing each number.

tests = [executor.submit(is_prime, n) for n in NUMBERS]

Print results

for number, prime in zip(NUMBERS, tests):

print(number, ’is prime:’, prime.result())

Clean up.

executor.shutdown()

• The ProcessPoolExecutormaintains a pool of worker processes that
it wakes up to execute functions given to .submit.

• (zip(L1, L2) returns the sequence (L1[0], L2[0]), (L1[1], L2[1]),

....)

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 6

Parallelizing Example (I): Map

• Creating an array of futures is common, so. . .

def find_primes():

executor = concurrent.futures.ProcessPoolExecutor()

for number, prime in zip(NUMBERS, executor.map(is_prime, NUMBERS)):

print(number, ’is prime:’, prime)

executor.shutdown()

• executor.map is like regular map, but gets its results by creating
futures and then applying .result to them.

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 7

Side Note: Insuring Clean Up

• Executors use up limited processor resources, so programmers usu-
ally want to make sure things are cleaned up reliably.

• Here’s the standard way:

def find_primes():

with concurrent.futures.ProcessPoolExecutor() as executor:

for number, prime in zip(NUMBERS, executor.map(is_prime, NUMBERS)):

print(number, ’is prime:, prime)

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 8

Parallelizing Example (II)

Another example from the Python documentation (sequentially);

URLS = [’http://www.foxnews.com/’, ’http://www.cnn.com/’,

’http://europe.wsj.com/’, ’http://www.bbc.co.uk/’,

’http://some-made-up-domain.com/’]

def load_url(url, timeout):

"""Read the result of a GET request to URL, waiting up to

TIMEOUT seconds."""

return urllib.request.urlopen(url, timeout=timeout).read()

def check_urls():

for url in URLS:

try:

print("{0} page is {1} bytes"

.format(url, len(load_url(url,60))))

except:

print("{0} page generated an exception".format(url))

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 9

Parallelizing Example (II): Overlapping waiting

• Sometimes, we use overt parallelism to avoid serial waiting.

• In the URL example, nothing happens while we wait for a remote site
to respond. We could send out all requests and then wait:

from concurrent.futures import ThreadPoolExecutor, as_completed

def check_urls():

with ThreadPoolExecutor(max_workers=5) as executor:

future_to_url = \

dict((executor.submit(load_url, url, 60), url)

for url in URLS)

for future in as_completed(future_to_url):

url = future_to_url[future]

if future.exception() is not None:

print(’{0} generated an exception: {1}’

.format(url, future.exception()))

else:

print(’{0} page is {1} bytes’

.future(url, len(future.result())))

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 10

Comments on Example II

• Threads are appropriate here, since we don’t really need parallel
computation: all threads will be waiting on I/O.

• The as_completedmethod takes an iterable of some kind that yields
futures, and returns an iterator that produces them as they com-
plete.

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 11

Queues: More Communication among Processes

• A queue of values (like the Mailboxes in Lecture #33) is a convenient
mechanism for communicating between processes.

• A process can wait for a value when it is ready and queue up a value
for another process when it has one.

• Flexible as to whether one waits for a process to respond before
continuing.

• In Python, the multiprocessing package provides Processes (which
we’ve been using in disguised form right along) and Queues, which
allow callers to wait for data.

def f(q):

q.put([42, None, ’hello’])

def trivial_example():

q = Queue()

p = Process(target=f, args=(q,))

p.start()

print(q.get()) # prints "[42, None, ’hello’]"

p.join() # Waits for p to finish

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 12

Pipelines

• All kinds of arrangements of processes can be constructed with Pro-
cess and Queue.

• One simple one: a pipeline is a sequence of processes, each of which
sends data to the next in line and receives it from the preceding
process.

• We can overlap the computations in each process, and get consider-
able speedup if they have comparable speed.

Input
Queue

Process
1

Queue
Process

2
. . .

Output
Queue

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 13

Pipelines in Code

def accum(input, output, s): def mul(input, output, k):

while True: while True:

p = input.get() p = input.get()

if p is None: if p is None:

output.put(None) output.put(None)

s += p output.put(p*k)

output.put(s)

Q1, Q2, Q3 = Queue(), Queue(), Queue()

stage1 = Process(target = accum, args=(Q1, Q2, 0))

stage2 = Process(target = mul, args=(Q2, Q3))

stage1.start(); stage2.start()

for i in range(10):

Q1.put(i)

Q1.put(None)

while True:

x = Q3.get()

if x is None: break

print(x)

stage1.join(); stage2.join()

Last modified: Mon Apr 16 17:25:41 2012 CS61A: Lecture #35 14

	Lecture 35: Streams and Concurrency
	Aside: Threads and Processes
	Futures
	Basics of Futures in Python: concurrent.futures
	Example of Futures (I)
	Parallelizing Example (I)
	Parallelizing Example (I): Map
	Side Note: Insuring Clean Up
	Parallelizing Example (II)
	Parallelizing Example (II): Overlapping waiting
	Comments on Example II
	Queues: More Communication among Processes
	Pipelines
	Pipelines in Code

