
Lecture #20: Recursive Processes, Memoization, Tree
Structures

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 1

Varieties of Recursive Processes

• We can characterize (potentially) recursive functions according to
the patterns in which data flows through them.

• The simplest case is a non-recursive function call, which does some-
thing (call it h) to its input data and returns the result:

def func0(x):

return h(x)

∗

Input Output

Function call

Operation

• “Operations” include any processing that does not cause further re-
cursion.

• This is a leaf call.

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 2

Iterative (Tail-Recursive) Processes

• Tail-recursive processes do no further processing after a recursive
call

def func1(x):

if P(x):

return h1(x)

else:

return func1(h2(x))

• Once we make a recursive call, can for-
get about the caller.

• Constant space needed for administra-
tive overhead (in principle)

• Time required (number of operations)
proportional to call depth.

• • •

∗

∗

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 3

Linear Recursions

• Linear recursions do one recursive call and then additional process-
ing

def func2(x):

if P(x):

return h1(x)

else:

return h3((func2(h2(x)))

• Must keep track of pending calls, be-
cause there is more to do for each.

• Space proportional to depth of calls
needed for administrative overhead.

• Time required proportional to call
depth.

• • •

∗

∗

∗

∗

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 4

Tree (General) Recursion

• Tree recursions do more than one recursive call in each function
execution.

def func3(x):

if P1(x):

return h1(x)

else:

y = func3(h2(x))

if P2(x):

return h3(x, y)

z = func3(h4(x, y))

return h5(x, y, z)

• Again, must keep track of pend-
ing calls (one per level).

• So, space proportional to depth
of calls.

• But time required may be expo-
nential in call depth.

• • • • • • • • • • • •

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 5

Avoiding Redundant Computation

• In the (tree-recursive) maze example, a naive search could take us
in circles, resulting in infinite time.

• Hence the visited parameter in the search function.

• This parameter is intended to catch redundant computation, in which
reprocessing certain arguments cannot produce anything new.

• We can apply this idea to cases of finite but redundant computation.

• For example, in count change, we often revisit the same subproblem:

– E.g., Consider making change for 87 cents.

– When choose to use one half-dollar piece, we have the same sub-
problem as when we choose to use no half-dollars and two quar-
ters.

• Saw an approach in Lecture #16: memoization.

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 6

Memoizing

• Idea is to keep around a table (“memo table”) of previously computed
values.

• Consult the table before using the full computation.

• Example: count change:

def count_change(amount, coins = (50, 25, 10, 5, 1)):

memo_table = {}

Local definition hides outer one so we can cut-and-paste

from the unmemoized (red) solution.

def count_change(amount, coins):

if (amount, coins) not in memo_table:

memo_table[amount,coins]

= full_count_change(amount, coins)

return memo_table[amount,coins]

def full_count_change(amount, coins):

original solution goes here verbatim

return count_change(amount,coins)

• Question: how could we test for infinite recursion?

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 7

Optimizing Memoization

• Used a dictionary to memoize count change, which is highly general,
but can be relatively slow.

• More often, we use arrays indexed by integers (lists in Python), but
the idea is the same.

• For example, in the count change program, we can index by amount
and by the portion of coins that we use, which is always a slice that
runs to the end.

def count_change(amount, coins = (50, 25, 10, 5, 1)):

memo_table[amt][k] contains the value computed for

count_change(amt, coins[k:])

memo_table = [[-1] * (len(coins)+1) for i in range(amount+1)]

def count_change(amount, coins):

if memo_table[amount][len(coins)] == -1:

memo_table[amount][len(coins)]

= full_count_change(amount, coins)

return memo_table[amount][len(coins)]

...

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 8

Order of Calls

• Going one step further, we can analyze the order in which our pro-
gram ends up filling in the table.

• So consider adding some tracing to our memoized count change pro-
gram:

memo_table = {}

def count_change(amount, coins):

... full_count_change(amount, coins) ...

return memo_table[amount,coins]

@trace

def full_count_change(amount, coins):

if amount == 0: return 1

elif not coins: return 0

elif amount >= coins[0]:

return count_change(amount, coins[1:]) \

+ count_change(amount-coins[0], coins)

else:

return count_change(amount, coins[1:])

return count_change(amount,coins)

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 9

Result of Tracing

• Consider count change(57) (returns only):

full_count_change(57, ()) -> 0

full_count_change(56, ()) -> 0

...

full_count_change(1, ()) -> 0

full_count_change(0, (1,)) -> 1

full_count_change(1, (1,)) -> 1

...

full_count_change(57, (1,)) -> 1

full_count_change(2, (5, 1)) -> 1

full_count_change(7, (5, 1)) -> 2

...

full_count_change(57, (5, 1)) -> 12

full_count_change(7, (10, 5, 1)) -> 2

full_count_change(17, (10, 5, 1)) -> 6

...

full_count_change(32, (10, 5, 1)) -> 16

full_count_change(7, (25, 10, 5, 1)) -> 2

full_count_change(32, (25, 10, 5, 1)) -> 18

full_count_change(57, (25, 10, 5, 1)) -> 60

full_count_change(7, (50, 25, 10, 5, 1)) -> 2

full_count_change(57, (50, 25, 10, 5, 1)) -> 62
Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 10

Dynamic Programming

• Now rewrite count change to make the order of calls explicit, so
that we needn’t check to see if a value is memoized.

• Technique is called dynamic programming (for some reason).

• We start with the base cases, and work backwards.

def count_change(amount, coins = (50, 25, 10, 5, 1)):

memo_table = [[-1] * (len(coins)+1) for i in range(amount+1)]

def count_change(amount, coins):

return memo_table[amount][len(coins)]

def full_count_change(amount, coins):

How often is this called?

... # (calls count_change for recursive results)

for a in range(0, amount+1):

memo_table[a][0] = full_count_change(a, ())

for k in range(1, len(coins) + 1):

for a in range(1, amount+1):

memo_table[a][k] = full_count_change(a, coins[-k:])

return count_change(amount, coins)

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 11

New Topic: Tree-Structured Data

• 1 Linear-recursive and tail-recursive functions make a single recur-
sive call in the function body. Tree-recursive functions can make
more.

• Linear recursive data structures (think rlists) have single embedded
recursive references to data of the same type, and usually corre-
spond to linear- or tail-recursive programs.

• To model some things, we need mulitple recursive references in ob-
jects.

• In the absence of circularity (paths from an object eventually lead-
ing back to it), such objects form data structures called trees:

– The objects themselves are called nodes or vertices.

– Tree objects that have no (non-null) pointers to other tree ob-
jects are called leaves.

– Those that do have such pointers are called inner nodes, and the
objects they point to are children (or subtrees or (uncommonly)
branches).

– A collection of disjoint trees is called a forest.

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 12

Example: Expressions

• An expression (in Python or other languages) typically has a recur-
sive structure. It is either

– A literal (like 5) or symbol (like x)—a leaf—or

– A compound expression consisting of an operator and zero or
more operands, each of which is itself an expression.

• For example, the expression x + (y+2)*(z+10) can be thought of as a
tree (what happened to the parentheses?):

+

x
*

+

y 2

+

z 10

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 13

Expressions as Tuples or Lists

• We can represent the abstract structure of the last slide with
Python objects we’ve already seen:

+ x

*

+ z 10+ y 2

("+", "x", ("*", ("+", "y", "2"), ("+", "z", "10")))

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 14

Class Representation

• . . . or we can introduce a Python class:

class ExprTree:

def __init__(self, operator):

self.__operator = operator

@property

def operator(self):

return self.__operator

@property

def left(self):

raise NotImplementedError

@property

def right(self):

raise NotImplementedError

class Leaf(ExprTree):

pass

class Inner(ExprTree):

def __init__(self, operator,

left, right):

ExprTree.__init__(self, operator)

self.__left = left;

self.__right = right

@property

def left(self):

return self.__left

@property

def right(self):

return self.__right

Inner("+", Leaf("x"),

Inner("*", Inner("+", Leaf("y"), Leaf("2")),

Inner("+", Leaf("z"), Leaf("10"))))

Last modified: Mon Mar 5 19:13:43 2012 CS61A: Lecture #20 15

	Lecture #20: Recursive Processes, Memoization, Tree Structures
	Varieties of Recursive Processes
	Iterative (Tail-Recursive) Processes
	Linear Recursions
	Tree (General) Recursion
	Avoiding Redundant Computation
	Memoizing
	Optimizing Memoization
	Order of Calls
	Result of Tracing
	Dynamic Programming
	New Topic: Tree-Structured Data
	Example: Expressions
	Expressions as Tuples or Lists
	Class Representation

