HMMs

State variables W_t and observation (evidence) variables (O_t), which are supposed to be shaded below. Transition model $P(W_{t+1}|W_t)$. Sensor model $P(O_t|W_t)$. The joint distribution of the HMM can be factorized as

$$P(W_1,...,W_T,O_1,...,O_T) = P(W_1) \prod_{t=1}^{T-1} P(W_{t+1}|W_t) \prod_{t=1}^{T} P(O_t|W_t)$$ \hspace{1cm} (1)

Define the following belief distribution

- $B(W_t) = P(W_t|O_1,...,O_t)$: Belief about state W_t given all the observations up until (and including) timestep t.
- $B'(W_t) = P(W_t|O_1,...,O_{t-1})$: Belief about state W_t given all the observations up until (but not including) timestep t.

Forward Algorithm

- *Prediction update:* $B'(W_{t+1}) = \sum_{w_t} P(W_{t+1}|w_t)B(w_t)$
- *Observation update:* $B(W_{t+1}) \propto P(O_{t+1}|W_{t+1})B'(W_{t+1})$

Particle Filtering

The Hidden Markov Model analog to Bayes’ net sampling is called particle filtering, and involves simulating the motion of a set of particles through a state graph to approximate the probability (belief) distribution of the random variable in question.

Instead of storing a full probability table mapping each state to its belief probability, we’ll instead store a list of n particles, where each particle is in one of the d possible states in the domain of our time-dependent random variable.

Once we’ve sampled an initial list of particles, the simulation takes on a similar form to the forward algorithm, with a time elapse update followed by an observation update at each timestep:
• **Prediction update** - Update the value of each particle according to the transition model. For a particle in state W_t, sample the updated value from the probability distribution given by $Pr(W_{t+1}|w_t)$. Note the similarity of the prediction update to prior sampling with Bayes’ nets, since the frequency of particles in any given state reflects the transition probabilities.

• **Observation update** - During the observation update for particle filtering, we use the sensor model $Pr(O_t|W_t)$ to weight each particle according to the probability dictated by the observed evidence and the particle’s state. Specifically, for a particle in state w_t with sensor reading o_t, assign a weight of $Pr(o_t|w_t)$. The algorithm for the observation update is as follows:

1. Calculate the weights of all particles as described above.
2. Calculate the total weight for each state.
3. If the sum of all weights across all states is 0, reinitialize all particles.
4. Else, normalize the distribution of total weights over states and resample your list of particles from this distribution.

Note the similarity of the observation update to likelihood weighting, where we again downweight samples based on our evidence.
1 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.

\[
\begin{array}{c}
\text{w}_1 \quad \text{w}_2 \\
\text{o}_1 \quad \text{o}_2
\end{array}
\]

<table>
<thead>
<tr>
<th>W_t</th>
<th>$P(W_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

| W_t | W_{t+1} | $P(W_{t+1}|W_t)$ |
|-------|-----------|------------------|
| 0 | 0 | 0.4 |
| 0 | 1 | 0.6 |
| 1 | 0 | 0.8 |
| 1 | 1 | 0.2 |

| W_t | O_t | $P(O_t|W_t)$ |
|-------|-------|--------------|
| 0 | a | 0.9 |
| 0 | b | 0.1 |
| 1 | a | 0.5 |
| 1 | b | 0.5 |

Suppose that we observe $O_1 = a$ and $O_2 = b$.
Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

\[
P(W_1, O_1 = a) = P(W_1)P(O_1 = a|W_1)
\]

\[
P(W_1 = 0, O_1 = a) = (0.3)(0.9) = 0.27
\]

\[
P(W_1 = 1, O_1 = a) = (0.7)(0.5) = 0.35
\]

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

\[
P(W_2, O_1 = a) = \sum_{w_1} P(w_1, O_1 = a)P(W_2|w_1)
\]

\[
P(W_2 = 0, O_1 = a) = (0.27)(0.4) + (0.35)(0.8) = 0.388
\]

\[
P(W_2 = 1, O_1 = a) = (0.27)(0.6) + (0.35)(0.2) = 0.232
\]

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

\[
P(W_2, O_1 = a, O_2 = b) = P(W_2, O_1 = a)P(O_2 = b|W_2)
\]

\[
P(W_2 = 0, O_1 = a, O_2 = b) = (0.388)(0.1) = 0.0388
\]

\[
P(W_2 = 1, O_1 = a, O_2 = b) = (0.232)(0.5) = 0.116
\]

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

Renormalizing the distribution above, we have

\[
P(W_2 = 0|O_1 = a, O_2 = b) = 0.0388/(0.0388 + 0.116) = 0.25
\]

\[
P(W_2 = 1|O_1 = a, O_2 = b) = 0.116/(0.0388 + 0.116) \approx 0.75
\]
2 Particle Filtering Apprenticeship

Consider a modified version of the apprenticeship problem. We are observing an agent’s actions in an MDP and are trying to determine which of a set \(\{ \pi_1, \ldots, \pi_n \} \) the agent is following. Let the random variable \(\Pi \) take values in that set and represent the policy that the agent is acting under. We consider only stochastic policies, so that \(A_t \) is a random variable with a distribution conditioned on \(S_t \) and \(\Pi \). As in a typical MDP, \(S_t \) is a random variable with a distribution conditioned on \(S_{t-1} \) and \(A_{t-1} \). The full Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting). Unfortunately, however, we, the observer, cannot see the states \(S_t \). Thus we are forced to use an adapted particle filtering algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate \(P(\Pi | a_1:t) \).

(a) The Bayes net for part (a) is

(ii) Write a recursive expression for \(P(\Pi, S_t | a_1:t) \) in terms of the CPTs in the Bayes net above. Hint: Think of the forward algorithm.

\[
P(\Pi, S_t | a_1:t) \propto \sum_{s_{t-1}} P(\Pi, s_{t-1} | a_1:t-1) P(a_t | S_t, \Pi) P(S_t | s_{t-1}, a_{t-1})
\]
We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s_t and a potential policy π_i.

(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in the boxes with the correct values so that the algorithm will approximate $P(\Pi, S_t | a_{1:t})$.

1. Elapse time: for each particle (s_t, π_i), sample a successor s_{t+1} from
 \[P(S_{t+1} | s_t, a_t) \]
 The policy π' in the new particle is π_i.

2. Incorporate evidence: To each new particle (s_{t+1}, π'), assign weight
 \[P(a_{t+1} | s_{t+1}, \pi') \]

3. Resample particles from the weighted particle distribution.

(b) We now observe the acting agent’s actions and rewards at each time step (but we still don’t know the states). Unlike the MDPs in lecture, here we use a stochastic reward function, so that R_t is a random variable with a distribution conditioned on S_t and A_t. The new Bayes net is given by

Notice that the observed rewards do in fact give useful information since d-separation does not give that $R_t \perp \perp \Pi | A_{1:t}$. Give an active path connecting R_t and Π when $A_{1:t}$ are observed. Your answer should be an ordered list of nodes in the graph, for example “$s_t, s_{t+1}, A_t, \Pi, A_{t-1}, R_{t-1}$”. R_t, S_t, A_t, Π. This list reversed is also correct, and many other similar (though more complicated) paths are also correct.
We now observe only the sequence of rewards and no longer observe the sequence of actions. The new Bayes net is:

![Bayes Net Diagram]

We will compute our estimate for \(P(\Pi \mid r_{1:t}) \) by coming up with a recursive algorithm for computing \(P(\Pi, S_t, A_t \mid r_{1:t}) \). (We can then sum out \(S_t \) and \(A_t \) to get the desired distribution; in this problem we ignore that step.)

(i) Write a recursive expression for \(P(\Pi, S_t, A_t \mid r_{1:t}) \) in terms of the CPTs in the Bayes net above.

\[
P(\Pi, S_t, A_t \mid r_{1:t}) \propto \sum_{s_{t-1}} \sum_{a_{t-1}} P(\Pi, s_{t-1}, a_{t-1} \mid r_{1:t-1})P(A_t \mid S_t, \Pi)P(S_t \mid s_{t-1}, a_{t-1})P(r_t \mid S_t, A_t)
\]

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state \(s_t \), a single action \(a_t \), and a potential policy \(\pi_i \).

(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in the boxes with the correct values so that the algorithm will approximate \(P(\Pi, S_t, A_t \mid r_{1:t}) \).

1. Elapse time: for each particle \((s_t, a_t, \pi_i)\), sample a successor state \(s_{t+1} \) from

\[
P(S_{t+1} \mid s_t, a_t)
\]

Then, sample a successor action \(a_{t+1} \) from

\[
P(A_{t+1} \mid s_{t+1}, \pi_i)
\]

The policy \(\pi' \) in the new particle is \(\pi_i \).

2. Incorporate evidence: To each new particle \((s_{t+1}, a_{t+1}, \pi')\), assign weight

\[
P(r_{t+1} \mid s_{t+1}, a_{t+1})
\]

3. Resample particles from the weighted particle distribution.