Announcements

- **Homework 7**
 - Due *Friday 8/7 at 11:59pm*

- **Project 5**
 - Due *Friday 8/7 at 11:59pm*

- **Written Assessment 3** to be released later this week
 - This is the last written assessment

- **Contest 2**
 - Ends *Wednesday 8/5 at 11:59pm*
CS 188: Artificial Intelligence
Kernels and Clustering

Instructor: Nikita Kitaev --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Case-Based Learning
Non-Separable Data
Case-Based Reasoning

- **Classification from similarity**
 - Case-based reasoning
 - Predict an instance’s label using similar instances

- **Nearest-neighbor classification**
 - 1-NN: copy the label of the most similar data point
 - K-NN: vote the k nearest neighbors (need a weighting scheme)
 - Key issue: how to define similarity
 - Trade-offs: Small k gives relevant neighbors, Large k gives smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
Parametric / Non-Parametric

- **Parametric models:**
 - Fixed set of parameters
 - More data means better settings

- **Non-parametric models:**
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit

- **(K)NN is non-parametric**
Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example

- Encoding: image is vector of intensities:
 \[1 = \langle 0.0, 0.0, 0.3, 0.8, 0.7, 0.1, \ldots, 0.0 \rangle \]

- What's the similarity function?
 - Dot product of two images vectors?
 \[\text{sim}(x, x') = x \cdot x' = \sum_i x_i x'_i \]
 - Usually normalize vectors so \(||x|| = 1 \)
 - \(\min = 0 \) (when?), \(\max = 1 \) (when?)
Similarity Functions
Basic Similarity

- Many similarities based on feature dot products:

\[
\text{sim}(x, x') = f(x) \cdot f(x') = \sum_{i} f_i(x) f_i(x')
\]

- If features are just the pixels:

\[
\text{sim}(x, x') = x \cdot x' = \sum_{i} x_i x'_i
\]

- Note: not all similarities are of this form
Better similarity functions use knowledge about vision

Example: invariant metrics:
- Similarities are invariant under certain transformations
- Rotation, scaling, translation, stroke-thickness...
- E.g:

16 x 16 = 256 pixels; a point in 256-dim space
These points have small similarity in \mathbb{R}^{256} (why?)
How can we incorporate such invariances into our similarities?

This and next few slides adapted from Xiao Hu, UIUC
Rotation Invariant Metrics

- Each example is now a curve in \mathbb{R}^{256}
- Rotation invariant similarity:

 \[s' = \max s(r(3), r(3')) \]

- E.g. highest similarity between images’ rotation lines
Template Deformation

- **Deformable templates:**
 - An “ideal” version of each category
 - Best-fit to image using min variance
 - Cost for high distortion of template
 - Cost for image points being far from distorted template

- **Used in many commercial digit recognizers**

Examples from [Hastie 94]
A Tale of Two Approaches…

- Nearest neighbor-like approaches
 - Can use fancy similarity functions
 - Don’t actually get to do explicit learning

- Perceptron-like approaches
 - Explicit training to reduce empirical error
 - Can’t use fancy similarity, only linear
 - Or can they? Let’s find out!
Kernelization
What is the final value of a weight w_y of a perceptron?

- Can it be any real vector?
- No! It’s built by adding up inputs.

\[w_y = 0 + f(x_1) - f(x_5) + \ldots \]

\[w_y = \sum_i \alpha_{i,y} f(x_i) \]

- Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

\[\alpha_y = \langle \alpha_{1,y}, \alpha_{2,y}, \ldots, \alpha_{n,y} \rangle \]
Dual Perceptron

- How to classify a new example \(x \)?

\[
\text{score}(y, x) = w_y \cdot f(x) \\
= \left(\sum_i \alpha_{i,y} f(x_i) \right) \cdot f(x) \\
= \sum_i \alpha_{i,y} (f(x_i) \cdot f(x)) \\
= \sum_i \alpha_{i,y} K(x_i, x)
\]

- If someone tells us the value of \(K \) for each pair of examples, never need to build the weight vectors (or the feature vectors)!
Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify x_n,

$$y = \arg \max_y \sum_i \alpha_{i,y} K(x_i, x_n)$$

- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise count of right class (for this instance)

$$\alpha_{y,n} = \alpha_{y,n} - 1 \quad \quad w_y = w_y - f(x_n)$$

$$\alpha_{y^*,n} = \alpha_{y^*,n} + 1 \quad \quad w_{y^*} = w_{y^*} + f(x_n)$$
Kernelized Perceptron

- If we had a black box (kernel) K that told us the dot product of two examples x and x':
 - Could work entirely with the dual representation
 - No need to ever take dot products ("kernel trick")

$$\text{score}(y, x) = w_y \cdot f(x)$$

$$= \sum_i \alpha_{i,y} K(x_i, x)$$

- Like nearest neighbor – work with black-box similarities
- Downside: slow if many examples get nonzero alpha
Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- “Kernel trick”: we can substitute any* similarity function in place of the dot product
- Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels sometimes work (but not always).
Non-Linearity
Non-Linear Separators

- Data that is linearly separable works out great for linear decision rules:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

This and next few slides adapted from Ray Mooney, UT
Non-Linear Separators

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \varphi(x) \]
Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back.

- Linear kernel:
 \[K(x, x') = x' \cdot x' = \sum_i x_i x'_i \]

- Quadratic kernel:
 \[K(x, x') = (x \cdot x' + 1)^2 \]
 \[= \sum_{i,j} x_i x_j x'_i x'_j + 2 \sum_i x_i x'_i + 1 \]

- RBF: infinite dimensional representation
 \[K(x, x') = \exp(-||x - x'||^2) \]

- Discrete kernels: e.g. string kernels
Why Kernels?

- Can’t you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
 - Yes, in principle, just compute them
 - No need to modify any algorithms
 - But, number of features can get large (or infinite)
 - Some kernels not as usefully thought of in their expanded representation, e.g. RBF kernels

- Kernels let us compute with these features implicitly
 - Example: implicit dot product in quadratic kernel takes much less space and time per dot product
 - Of course, there’s the cost for using the pure dual algorithms: you need to compute the similarity to every training datum
Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data
Clustering

- Clustering systems:
 - Unsupervised learning
 - Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
 - Useful when don’t know what you’re looking for
 - Requires data, but no labels
 - Often get gibberish
Clustering
Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

What could “similar” mean?
- One option: small (squared) Euclidean distance

\[\text{dist}(x, y) = (x - y)^T (x - y) = \sum_i (x_i - y_i)^2 \]
K-Means
K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points' assignments change
K-Means Example
Consider the total distance to the means:

$$\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i})$$

Each iteration reduces \(\phi\)

Two stages each iteration:
- Update assignments: fix means \(c\), change assignments \(a\)
- Update means: fix assignments \(a\), change means \(c\)
Phase I: Update Assignments

- For each point, re-assign to closest mean:

\[a_i = \arg\min_k \text{dist}(x_i, c_k) \]

- Can only decrease total distance \(\phi \):

\[\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]
Phase II: Update Means

- Move each mean to the average of its assigned points:
 \[c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i \]

- Also can only decrease total distance... (Why?)

- Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean
Initialization

- **K-means is non-deterministic**
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?

- Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics
K-Means Getting Stuck

- A local optimum:

Why doesn’t this work out like the earlier example, with the purple taking over half the blue?
K-Means Questions

- Will K-means converge?
 - To a global optimum?

- Will it always find the true patterns in the data?
 - If the patterns are very clear?

- Will it find something interesting?

- Do people ever use it?

- How many clusters to pick?
Agglomerative Clustering
Agglomerative Clustering

- **Agglomerative clustering:**
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters

- **Algorithm:**
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left

- Produces not one clustering, but a family of clusterings represented by a dendrogram
How should we define “closest” for clusters with multiple elements?

Many options

- Closest pair (single-link clustering)
- Farthest pair (complete-link clustering)
- Average of all pairs
- Ward’s method (min variance, like k-means)

Different choices create different clustering behaviors
Agglomerative Clustering Example

This example adapted from John Guttag, MIT.
Example: Google News

Top-level categories: supervised classification

Story groupings: unsupervised clustering
Next Time: Decision Trees