Announcements

- **Midterm 2**
 - Midterm 2 is on **Wednesday 7/29, 12pm-2pm**
 - Practice Midterm released
 - Monday and Tuesday discussions will be replaced with review sections

- **Midterm 1 Grades Released**
 - Regrades will open tonight, until Monday 7/27 at 11:59pm

- **Written Assessment 2 & Homework 5**
 - Due **Friday 7/24 at 11:59pm**

- **Project 4**
 - Due **Friday 7/31 at 11:59pm**
CS 188: Artificial Intelligence
Naïve Bayes

Agent Testing Today!

Instructor: Nikita Kitaev --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
General Naïve Bayes

- A general Naive Bayes model:

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i | Y) \]
Parameter Estimation
Maximum Likelihood?

- Relative frequencies are the maximum likelihood estimates

\[
\theta_{ML} = \arg \max_\theta P(X|\theta) = \arg \max_\theta \prod_i P_\theta(X_i)
\]

\[
P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}
\]

- Another option is to consider the most likely parameter value given the data

\[
\theta_{MAP} = \arg \max_\theta P(\theta|X) = \arg \max_\theta P(X|\theta)P(\theta)/P(X) = \arg \max_\theta P(X|\theta)P(\theta)
\]
Example: Overfitting

\[P(\text{features}, C = 2) \]

\[P(C = 2) = 0.1 \]

\[P(\text{on}|C = 2) = 0.8 \]

\[P(\text{on}|C = 2) = 0.1 \]

\[P(\text{off}|C = 2) = 0.1 \]

\[P(\text{on}|C = 2) = 0.01 \]

\[P(\text{features}, C = 3) \]

\[P(C = 3) = 0.1 \]

\[P(\text{on}|C = 3) = 0.8 \]

\[P(\text{on}|C = 3) = 0.9 \]

\[P(\text{off}|C = 3) = 0.7 \]

\[P(\text{on}|C = 3) = 0.0 \]

2 wins!!
Smoothing
Unseen Events
Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did

\[
P_{LAP}(x) = \frac{c(x) + 1}{\sum_x [c(x) + 1]}
\]

\[
= \frac{c(x) + 1}{N + |X|}
\]

- Can derive this estimate with Dirichlet priors (see cs281a)
Laplace Smoothing

- Laplace’s estimate (extended):
 - Pretend you saw every outcome \(k \) extra times

\[
P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}
\]

- What’s Laplace with \(k = 0 \)?
- \(k \) is the strength of the prior

- Laplace for conditionals:
 - Smooth each condition independently:

\[
P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|}
\]

\[
P_{LAP,0}(X) =
\]
\[
P_{LAP,1}(X) =
\]
\[
P_{LAP,100}(X) =
\]
Estimation: Linear Interpolation*

- In practice, Laplace can perform poorly for $P(X|Y)$:
 - When $|X|$ is very large
 - When $|Y|$ is very large

- Another option: linear interpolation
 - Also get the empirical $P(X)$ from the data
 - Make sure the estimate of $P(X|Y)$ isn’t too different from the empirical $P(X)$

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)$$

- What if α is 0? 1?

- For even better ways to estimate parameters, as well as details of the math, see cs281a, cs288
For real classification problems, smoothing is critical

New odds ratios:

\[
\frac{P(W|\text{ham})}{P(W|\text{spam})} \quad \frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

<table>
<thead>
<tr>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>helvetica</td>
</tr>
<tr>
<td>seems</td>
</tr>
<tr>
<td>group</td>
</tr>
<tr>
<td>ago</td>
</tr>
<tr>
<td>areas</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>verdana</td>
</tr>
<tr>
<td>Credit</td>
</tr>
<tr>
<td>ORDER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>money</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Do these make more sense?
Tuning
Now we’ve got two kinds of unknowns
- Parameters: the probabilities $P(X|Y)$, $P(Y)$
- Hyperparameters: e.g. the amount / type of smoothing to do, k, α

What should we learn where?
- Learn parameters from training data
- Tune hyperparameters on different data
 - Why?
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data
Features:

- 4 Wheels!
- Larger than a Breadbox
- Made of Metal
- 100,000-mile drivetrain warranty

Batteries Not Included
What to Do About Errors?

- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model

- Next we’ll talk about classifiers which let you easily add arbitrary features more easily, and, later, how to induce new features
First step: get a baseline
- Baselines are very simple “straw man” procedures
- Help determine how hard the task is
- Help know what a “good” accuracy is

Weak baseline: most frequent label classifier
- Gives all test instances whatever label was most common in the training set
- E.g. for spam filtering, might label everything as ham
- Accuracy might be very high if the problem is skewed
- E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

For real research, usually use previous work as a (strong) baseline
The confidence of a probabilistic classifier:
- Posterior probability of the top label
\[
\text{confidence}(x) = \max_y P(y|x)
\]
- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

Calibration
- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What’s the value of calibration?
Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them
CS 188: Artificial Intelligence
Perceptrons and Logistic Regression

Instructor: Nikita Kitaev
University of California, Berkeley
Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

Hello,
Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just
Some (Simplified) Biology

- Very loose inspiration: human neurons
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

\[
\text{activation}_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)
\]

- If the activation is:
 - Positive, output +1
 - Negative, output -1
Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

\[w \cdot f \] positive means the positive class
Decision Rules
In the space of feature vectors
- Examples are points
- Any weight vector is a hyperplane
- One side corresponds to $Y=+1$
- Other corresponds to $Y=-1$

w

<table>
<thead>
<tr>
<th>BIAS</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>free</td>
<td>4</td>
</tr>
<tr>
<td>money</td>
<td>2</td>
</tr>
</tbody>
</table>

$f \cdot w = 0$
Weight Updates
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 - If correct (i.e., $y=y^*$), no change!
 - If wrong: adjust the weight vector
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 \[y = \begin{cases}
 +1 & \text{if } w \cdot f(x) \geq 0 \\
 -1 & \text{if } w \cdot f(x) < 0
 \end{cases} \]
 - If correct (i.e., y=\(y^*\)), no change!
 - If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^*\) is -1.
 \[w = w + y^* \cdot f \]
Examples: Perceptron

- Separable Case
If we have multiple classes:
 - A weight vector for each class: w_y
 - Score (activation) of a class y: $w_y \cdot f(x)$
 - Prediction highest score wins

$$y = \arg \max_y w_y \cdot f(x)$$

Binary = multiclass where the negative class has weight zero
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights
 \[y = \text{arg max}_y \, w_y \cdot f(x) \]
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer
 \[w_y = w_y - f(x) \]
 \[w_{y^*} = w_{y^*} + f(x) \]
Example: Multiclass Perceptron

“win the vote”
“win the election”
“win the game”

<table>
<thead>
<tr>
<th>w_{SPORTS}</th>
<th>$w_{POLITICS}$</th>
<th>w_{TECH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS : 1</td>
<td>BIAS : 0</td>
<td>BIAS : 0</td>
</tr>
<tr>
<td>win : 0</td>
<td>win : 0</td>
<td>win : 0</td>
</tr>
<tr>
<td>game : 0</td>
<td>game : 0</td>
<td>game : 0</td>
</tr>
<tr>
<td>vote : 0</td>
<td>vote : 0</td>
<td>vote : 0</td>
</tr>
<tr>
<td>the : 0</td>
<td>the : 0</td>
<td>the : 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Properties of Perceptrons

- **Separability**: true if some parameters get the training set perfectly correct.

- **Convergence**: if the training is separable, perceptron will eventually converge (binary case).

- **Mistake Bound**: the maximum number of mistakes (binary case) related to the *margin* or degree of separability.

\[
\text{mistakes} < \frac{k}{\delta^2}
\]
Problems with the Perceptron

- Noise: if the data isn’t separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a “barely” separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Improving the Perceptron
Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
Non-Separable Case: Probabilistic Decision
How to get probabilistic decisions?

- Perceptron scoring: \(z = w \cdot f(x) \)
- If \(z = w \cdot f(x) \) very positive \(\rightarrow \) want probability going to 1
- If \(z = w \cdot f(x) \) very negative \(\rightarrow \) want probability going to 0

- Sigmoid function

\[\phi(z) = \frac{1}{1 + e^{-z}} \]
Best w?

- Maximum likelihood estimation:

$$\max_w \ ll(w) = \max_w \sum_i \log P(y^{(i)}|x^{(i)}; w)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression
Separable Case: Deterministic Decision – Many Options
Separable Case: Probabilistic Decision – Clear Preference
A 1D Example

\[P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}} \]

Probability increases exponentially as we move away from boundary.

Normalizer:

\[P(\text{blue}) = P(\text{red}) = 0.5 \]

Almost 0.0

Definitely blue

Not sure

Definitely red

Almost 1.0
The Soft Max

\[P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}} \]

looks like \(\max_y w_y \cdot x \)
Multiclass Logistic Regression

- **Recall Perceptron:**
 - A weight vector for each class: \(w_y \)

 Score (activation) of a class \(y \):
 \[w_y \cdot f(x) \]

 Prediction highest score wins
 \[y = \text{arg max}_y \ w_y \cdot f(x) \]

- **How to make the scores into probabilities?**

 \[z_1, z_2, z_3 \rightarrow \frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3}} \]

 - Original activations
 - Softmax activations
Best w?

- Maximum likelihood estimation:

$$\max_w \; ll(w) = \max_w \; \sum_i \log P(y^{(i)}|x^{(i)}; w)$$

with:

$$P(y^{(i)}|x^{(i)}; w) = \frac{e^{w y^{(i)} \cdot f(x^{(i)})}}{\sum_y e^{w y \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression
Optimization

i.e., how do we solve:

\[
\max_w \ log_p(\sum_i \ log(P(y(i)|x(i); w)))
\]