Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state

- Basic idea:
 - Allow “bad” moves occasionally, depending on “temperature”
 - High temperature => more bad moves allowed, shake the system out of its local minimum
 - Gradually reduce temperature according to some schedule
 - Sounds pretty flaky, doesn’t it?
function SIMULATED-ANNEALING(problem, schedule) returns a state

current ← problem.initial-state

for t = 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← next.value – current.value
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{ΔE/T}$
Simulated Annealing

- **Theoretical guarantee:**
 - Stationary distribution (Boltzmann): \(P(x) \propto e^{E(x)/T} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- **Proof sketch**
 - Consider two adjacent states \(x, y \) with \(E(y) > E(x) \) [high is good]
 - Assume \(x \rightarrow y \) and \(y \rightarrow x \) and outdegrees \(D(x) = D(y) = D \)
 - Let \(P(x), P(y) \) be the equilibrium occupancy probabilities at \(T \)
 - Let \(P(x \rightarrow y) \) be the probability that state \(x \) transitions to state \(y \)
Simulated Annealing

- Is this convergence an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - “Slowly enough” may mean exponentially slowly
 - Random restart hillclimbing also converges to optimal state...

- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems
Local beam search

- **Basic idea:**
 - K copies of a local search algorithm, initialized randomly
 - For each iteration
 - Generate ALL successors from K current states
 - Choose best K of these to be the new current states

- Why is this different from K local searches in parallel?
 - The searches *communicate*! “Come over here, the grass is greener!”

- What other well-known algorithm does this remind you of?
 - Evolution!
Genetic algorithms use a natural selection metaphor

- Resample K individuals at each step (selection) weighted by fitness function
- Combine by pairwise crossover operators, plus mutation to give variety
Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?
Local search in continuous spaces
Example: Siting airports in Romania

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport locations
\(x = (x_1, y_1), (x_2, y_2), (x_3, y_3) \)

City locations \((x_c, y_c)\)

\(C_a \) = cities closest to airport \(a \)

Objective: minimize
\[
f(x) = \sum_a \sum_{c \in C_a} (x_a - x_c)^2 + (y_a - y_c)^2
\]
Handling a continuous state/action space

1. Discretize it!
 - Define a grid with increment δ, use any of the discrete algorithms

2. Choose random perturbations to the state
 a. First-choice hill-climbing: keep trying until something improves the state
 b. Simulated annealing

3. Compute gradient of $f(x)$ analytically
Finding extrema in continuous space

- Gradient vector \(\nabla f(x) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \ldots)^T \)
- For the airports, \(f(x) = \sum_a \sum_{c \in C_a} (x_a - x_c)^2 + (y_a - y_c)^2 \)
- \(\frac{\partial f}{\partial x_1} = \sum_{c \in C_1} 2(x_1 - x_c) \)
- At an extremum, \(\nabla f(x) = 0 \)
- Can sometimes solve in closed form: \(x_1 = (\sum_{c \in C_1} x_c)/|C_1| \)
- Is this a local or global minimum of \(f \)?
- Gradient descent: \(x \leftarrow x - \alpha \nabla f(x) \)
 - Huge range of algorithms for finding extrema using gradients
Many configuration and optimization problems can be formulated as local search

General families of algorithms:
- Hill-climbing, continuous optimization
- Simulated annealing (and other stochastic methods)
- Local beam search: multiple interaction searches
- Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches
CS 188: Artificial Intelligence

Games: Minimax and Alpha-Beta

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley
Outline

- History / Overview
- Minimax for Zero-Sum Games
- α-β Pruning
- Finite lookahead and evaluation
A brief history

- **Checkers:**
 - 1950: First computer player.
 - 1959: Samuel’s self-taught program.
 - 1994: First computer world champion: Chinook defeats Tinsley
 - 2007: Checkers solved! Endgame database of 39 trillion states

- **Chess:**
 - 1960s onward: gradual improvement under “standard model”
 - 1997: Deep Blue defeats human champion Garry Kasparov
 - 2022: Stockfish rating 3541 (vs 2882 for Magnus Carlsen 2015).

- **Go:**
 - 1968: Zobrist’s program plays legal Go, barely (b>300!)
 - 1968-2005: various ad hoc approaches tried, novice level
 - 2005-2014: Monte Carlo tree search -> strong amateur
 - 2016-2017: AlphaGo defeats human world champions

- **Pacman**
Types of Games

- Game = task environment with > 1 agent
- Axes:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - Two, three, or more players?
 - Teams or individuals?
 - Turn-taking or simultaneous?
 - Zero sum?

- Want algorithms for calculating a contingent plan (a.k.a. strategy or policy) which recommends a move for every possible eventuality
“Standard” Games

- Standard games are deterministic, observable, two-player, turn-taking, zero-sum

- Game formulation:
 - Initial state: s_0
 - Players: Player(s) indicates whose move it is
 - Actions: Actions(s) for player on move
 - Transition model: Result(s,a)
 - Terminal test: Terminal-Test(s)
 - Terminal values: Utility(s,p) for player p
 - Or just Utility(s) for player making the decision at root
Zero-Sum Games

- **Zero-Sum Games**
 - Agents have *opposite* utilities
 - Pure competition:
 - One *maximizes*, the other *minimizes*

- **General-Sum Games**
 - Agents have *independent* utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible

- **Team Games**
 - Common payoff for all team members
Adversarial Search
Single-Agent Trees
Value of a state:
The best achievable outcome (utility) from that state

Non-Terminal States:
\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

Terminal States:
\[V(s) = \text{known} \]
Tic-Tac-Toe Game Tree

- MAX (X)
- MIN (O)

Terminal Utility:
- -1
- 0
- +1
Minimax Values

MAX nodes: under Agent’s control
\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

MIN nodes: under Opponent’s control
\[V(s) = \min_{s' \in \text{successors}(s)} V(s') \]

Terminal States:
\[V(s) = \text{known} \]
Minimax algorithm

- Choose action leading to state with best *minimax value*
- Assumes all future moves will be optimal
- => rational against a rational player
Implementation

function minimax-value(s) returns a value
 if Terminal-Test(s) then return Utility(s)
 if Player(s) = MAX then return max_a in Actions(s) minimax-value(Result(s,a))
 if Player(s) = MIN then return min_a in Actions(s) minimax-value(Result(s,a))

function minimax-decision(s) returns an action
 return the action a in Actions(s) with the highest minimax-value(Result(s,a))
Generalized minimax

- What if the game is not zero-sum, or has multiple players?

- Generalization of minimax:
 - Terminals have *utility tuples*
 - Node values are also utility tuples
 - *Each player maximizes its own component*
 - Can give rise to cooperation and competition dynamically...

![Diagram showing a game tree with utility values at each node.](image)
Emergent coordination in ghosts
How efficient is minimax?

- Just like (exhaustive) DFS
- Time: $O(b^m)$
- Space: $O(bm)$

Example: For chess, $b \approx 35$, $m \approx 100$

- Exact solution is completely infeasible
- Humans can’t do this either, so how do we play chess?
Game Tree Pruning
Minimax Example
\(\alpha = \) best option so far from any MAX node on this path

- **The order of generation matters**: more pruning is possible if good moves come first
Alpha-Beta Quiz 2
Alpha-Beta Pruning

- **General case (pruning children of MIN node)**
 - We’re computing the MIN-VALUE at some node n
 - We’re looping over n’s children
 - n’s estimate of the childrens’ min is dropping
 - Who cares about n’s value? MAX
 - Let α be the best value that MAX can get so far at any choice point along the current path from the root
 - If n becomes worse than α, MAX will avoid it, so we can prune n’s other children (it’s already bad enough that it won’t be played)

- **Pruning children of MAX node is symmetric**
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root
Alpha-Beta Implementation

\[\alpha: \text{MAX's best option on path to root} \]

\[\beta: \text{MIN's best option on path to root} \]

def max-value(state, α, β):

- initialize \(v = -\infty \)
- for each successor of state:
 - \(v = \max(v, \text{min-value}(\text{successor, } \alpha, \beta)) \)
 - if \(v \geq \beta \)
 - return \(v \)
 - \(\alpha = \max(\alpha, v) \)
- return \(v \)

def min-value(state, α, β):

- initialize \(v = +\infty \)
- for each successor of state:
 - \(v = \min(v, \text{max-value}(\text{successor, } \alpha, \beta)) \)
 - if \(v \leq \alpha \)
 - return \(v \)
 - \(\beta = \min(\beta, v) \)
- return \(v \)
Alpha-Beta Pruning Properties

- Theorem: This pruning has **no effect** on minimax value computed for the root!

- Good child ordering improves effectiveness of pruning
 - Iterative deepening helps with this

- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!

- This is a simple example of **metareasoning** (reasoning about reasoning)

- For chess: only 35^{50} instead of 35^{100}!! Yaaay!!!!!
Summary

- Games are decision problems with \(\geq 2 \) agents
 - Huge variety of issues and phenomena depending on details of interactions and payoffs
- For zero-sum games, optimal decisions defined by minimax
 - Simple extension to n-player “rotating” max with vectors of utilities
 - Implementable as a depth-first traversal of the game tree
 - Time complexity \(O(b^m) \), space complexity \(O(bm) \)
- Alpha-beta pruning
 - Preserves optimal choice at the root
 - Alpha/beta values keep track of best obtainable values from any max/min nodes on path from root to current node
 - Time complexity drops to \(O(b^{m/2}) \) with ideal node ordering
- Exact solution is impossible even for “small” games like chess