function $\text{TREE-SEARCH}(\text{problem, strategy})$ returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

- Main variations:
 - Which leaf node to expand next
 - Whether to check for repeated states
 - Data structures for frontier, expanded nodes
Depth-First Search
Depth-First Search

Strategy: expand a deepest node first

Implementation:
Frontier is a LIFO stack
Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

Cartoon of search tree:
- b is the branching factor
- m is the maximum depth
- solutions at various depths

Number of nodes in entire tree?
- $1 + b + b^2 + \ldots + b^m = O(b^m)$
Depth-First Search (DFS) Properties

- **What nodes does DFS expand?**
 - Some left prefix of the tree down to depth \(m \).
 - Could process the whole tree!
 - If \(m \) is finite, takes time \(O(b^m) \)

- **How much space does the frontier take?**
 - Only has siblings on path to root, so \(O(bm) \)

- **Is it complete?**
 - \(m \) could be infinite
 - Preventing cycles may help (more later)

- **Is it optimal?**
 - No, it finds the “leftmost” solution, regardless of depth or cost
Breadth-First Search
Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Frontier is a FIFO queue
Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time $O(b^s)$

- How much space does the frontier take?
 - Has roughly the last tier, so $O(b^s)$

- Is it complete?
 - s must be finite if a solution exists, so yes!

- Is it optimal?
 - If costs are equal (e.g., 1)
Iterative Deepening

- Idea: get DFS’s space advantage with BFS’s time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.

- Isn’t that wastefully redundant?
 - Generally most of the work happens in the lowest level searched, so it’s not so bad!
 - Extra work is $O(b^{s-1})$
Uniform Cost Search
Uniform Cost Search

\(g(n) = \text{cost from root to } n \)

Strategy: expand lowest \(g(n) \)

Frontier is a priority queue sorted by \(g(n) \)

![Diagram of a graph with labeled nodes and edges showing cost contours and priority queue structure.](image_url)
Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Expands all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- How much space does the frontier take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- Is it complete?
 - Assuming C^* is finite and $\varepsilon > 0$, yes!

- Is it optimal?
 - Yes! (Proof next lecture via A*)
Assume known, discrete, observable, deterministic, atomic
Search problems defined by $S, s_0, A(s), \text{Result}(s,a), G(s), c(s,a,s')$
Search algorithms find action sequences that reach goal states
- Optimal = minimum-cost

Search algorithm properties:
- Depth-first: incomplete, suboptimal, space-efficient
- Breadth-first: complete, (sub)optimal, space-prohibitive
- Iterative deepening: complete, (sub)optimal, space-efficient
- Uniform-cost: complete, optimal, space-prohibitive
CS 188: Artificial Intelligence

Informed Search

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley
Example: route-finding in Romania
What we would like to have happen

Guide search *towards the goal* instead of *all over the place*

Informed

Uninformed
A*: the core idea

- Expand a node n most likely to be on an optimal path
- Expand a node n s.t. the cost of the best solution through n is optimal
- Expand a node n with lowest value of $g(n) + h^*(n)$
 - $g(n)$ is the cost from root to n
 - $h^*(n)$ is the optimal cost from n to the closest goal
- We seldom know $h^*(n)$ but might have a heuristic approximation $h(n)$
- A^* = tree search with priority queue ordered by $f(n) = g(n) + h(n)$
Example: route-finding in Romania

\[h(n) = \text{straight-line distance to Bucharest} \]
Example: pathing in Pacman

- $h(n) = \text{Manhattan distance} = |\Delta x| + |\Delta y|$
- Is Manhattan better than straight-line distance?
Is A* Optimal?

What went wrong?
- *Actual* bad solution cost < *estimated* good solution cost
- We need estimates to be less than actual costs!
Admissible Heuristics
Admissible Heuristics

- A heuristic h is *admissible* (optimistic) if:

 \[0 \leq h(n) \leq h^*(n) \]

 where $h^*(n)$ is the true cost to a nearest goal

- Example:

- Finding good, cheap admissible heuristics is the key to success
Optimality of A* Tree Search
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will be chosen for expansion before B
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
 1. $f(n) \leq f(A)$

\[f(n) = g(n) + h(n) \]
\[f(n) \leq g(A) \]
\[g(A) = f(A) \]

Definition of f-cost

Admissibility of h

$h = 0$ at a goal
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
 1. $f(n) \leq f(A)$
 2. $f(A) < f(B)$

$g(A) < g(B)$
Suboptimality of B

$f(A) < f(B)$
$h = 0$ at a goal
Proof:

- Imagine B is on the frontier
- Some ancestor n of A is on the frontier, too (maybe A itself!)
- Claim: n will be expanded before B
 1. $f(n) \leq f(A)$
 2. $f(A) < f(B)$
 3. n is expanded before B
- All ancestors of A are expanded before B
- A is expanded before B
- A^* tree search is optimal
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
Comparison

Greedy (h) Uniform Cost (g) A* (g+h)
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- Protein design
- Chemical synthesis
- ...

...
Creating Heuristics

YOU GOT HEURISTIC UPGRADE!
Creating Admissible Heuristics

- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available.

Problem P_2 is a relaxed version of P_1 if $A_2(s) \supseteq A_1(s)$ for every s.

Theorem: $h_2^*(s) \leq h_1^*(s)$ for every s, so $h_2^*(s)$ is admissible for P_1.

366
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What are the step costs?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$

Start State

Goal State

Average nodes expanded when the optimal path has...

<table>
<thead>
<tr>
<th></th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>A*TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

Total Manhattan distance

Why is it admissible?

\[h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \]

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>A*MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>
Combining heuristics

- **Dominance**: \(h_1 \geq h_2 \) if
 \[
 \forall n \quad h_1(n) \geq h_2(n)
 \]
 - Roughly speaking, larger is better as long as both are admissible
 - The zero heuristic is pretty bad (what does A* do with h=0?)
 - The exact heuristic is pretty good, but usually too expensive!

- **What if we have two heuristics, neither dominates the other?**
 - Form a new heuristic by taking the max of both:
 \[
 h(n) = \max(h_1(n), h_2(n))
 \]
 - Max of admissible heuristics is admissible and dominates both!
Example: Knight’s moves

- Minimum number of knight’s moves to get from A to B?
 - $h_1 = \text{(Manhattan distance)}/3$
 - $h_1' = h_1$ rounded up to correct parity (even if A, B same color, odd otherwise)
 - $h_2 = \text{(Euclidean distance)}/\sqrt{5}$ (rounded up to correct parity)
 - $h_3 = \text{(max x or y shift)}/2$ (rounded up to correct parity)
 - $h(n) = \max(h_1'(n), h_2(n), h_3(n))$ is admissible!
Optimality of A* Graph Search

This part is a bit fiddly, sorry about that.
A* Graph Search Gone Wrong?

State space graph

Search tree

Simple check against expanded set blocks C
Fancy check allows new C if cheaper than old but requires recalculating C’s descendants
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 \[h(A) \leq h^*(A) \]
 - Consistency: heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq c(A,C) \]
 or \[h(A) \leq c(A,C) + h(C) \] (triangle inequality)
 - Note: \(h^* \) necessarily satisfies triangle inequality

- **Consequences of consistency:**
 - The \(f \) value along a path never decreases:
 \[h(A) \leq c(A,C) + h(C) \implies g(A) + h(A) \leq g(A) + c(A,C) + h(C) \]
 - A* graph search is optimal
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal
Optimality

- Tree search:
 - A* is optimal if heuristic is admissible

- Graph search:
 - A* optimal if heuristic is consistent

- Consistency implies admissibility

- Most natural admissible heuristics tend to be consistent, especially if from relaxed problems
But...

- A* keeps the entire explored region in memory
- => will run out of space before you get bored waiting for the answer
- There are variants that use less memory (Section 3.5.5):
 - IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
 - On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
 - Very inefficient when f is real-valued and each node has a unique value
 - RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best alternative path available from any ancestor of the current node
 - When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on that branch
 - SMA* uses *all available memory* for the queue, minimizing thrashing
 - When full, drop worst node on the queue but remember its value in the parent
A*: Summary

- A* orders nodes in the queue by $f(n) = g(n) + h(n)$
- A* is optimal for trees/graphs with admissible/consistent heuristics
- Heuristic design is key: often use relaxed problems