CS 188: Artificial Intelligence

Markov Models

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley
Often, we want to reason about a sequence of observations where the state of the underlying system is changing.

- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Global climate

Need to introduce time into our models.
Markov Models (aka Markov chain/process)

- Value of X at a given time is called the **state** (usually discrete, finite)

 ![Diagram](image)

 $P(X_0)$
 $P(X_t | X_{t-1})$

- The **transition model** $P(X_t | X_{t-1})$ specifies how the state evolves over time
- **Stationarity** assumption: transition probabilities are the same at all times
- **Markov** assumption: “future is independent of the past given the present”
 - X_{t+1} is independent of X_0, \ldots, X_{t-1} given X_t
 - This is a **first-order** Markov model (a kth-order model allows dependencies on k earlier steps)

- Joint distribution $P(X_0, \ldots, X_T) = P(X_0) \prod_t P(X_t | X_{t-1})$
Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph, joint = product of conditionals
- No:
 - Infinitely many variables (unless we truncate)
 - Repetition of transition model not part of standard Bayes net syntax
Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: \(P(X_t = k | X_{t-1} = k \pm 1) = 0.5 \)
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
 - How far does it get as a function of \(t \)?
 - Expected distance is \(O(\sqrt{t}) \)
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
Example: n-gram models

We call ourselves *Homo sapiens*—man the wise—because our **intelligence** is so important to us. For thousands of years, we have tried to understand *how we think*; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

- **State:** word at position t in text (can also build letter n-grams)
- **Transition model** (probabilities come from empirical frequencies):
 - **Unigram** (zero-order): $P(Word_t = i)$
 - “logical are as are confusion a may right tries agent goal the was . . .”
 - **Bigram** (first-order): $P(Word_t = i \mid Word_{t-1} = j)$
 - “systems are very similar computational approach would be represented . . .”
 - **Trigram** (second-order): $P(Word_t = i \mid Word_{t-1} = j, Word_{t-2} = k)$
 - “planning and scheduling are integrated the success of naive bayes model is . . .”
- **Applications:** text classification, spam detection, author identification, language classification, speech recognition
Example: Web browsing

- **State:** URL visited at step \(t \)
- **Transition model:**
 - With probability \(p \), choose an outgoing link at random
 - With probability \((1-p) \), choose an arbitrary new page
- **Question:** What is the *stationary distribution* over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- **Application:** Google page rank
Example: Weather

- States \{\text{rain, sun}\}

- Initial distribution \(P(X_0)\)

\[
\begin{array}{c|cc}
\text{P}(X_0) & \text{sun} & \text{rain} \\
\hline
\text{sun} & 0.5 & 0.5 \\
\end{array}
\]

- Transition model \(P(X_t | X_{t-1})\)

\[
\begin{array}{c|cc}
X_{t-1} & P(X_t | X_{t-1}) & \\
\hline
\text{sun} & 0.9 & 0.1 \\
\text{rain} & 0.3 & 0.7 \\
\end{array}
\]
Weather prediction

- Time 0: <0.5,0.5>

- What is the weather like at time 1?
 - $P(X_1) = \sum_{x_0} P(X_1, X_0=x_0)$
 - $= \sum_{x_0} P(X_0=x_0) P(X_1 | X_0=x_0)$
 - $= 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>$
Weather prediction, contd.

- **Time 1:** <0.6,0.4>

| X_{t-1} | $P(X_t|X_{t-1})$ |
|-----------|------------------|
| sun | 0.9 0.1 |
| rain | 0.3 0.7 |

- What is the weather like at time 2?
 - $P(X_2) = \sum_{x_1} P(X_2, X_1=x_1)$
 - $= \sum_{x_1} P(X_1=x_1) \ P(X_2|X_1=x_1)$
 - $= 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>$
Weather prediction, contd.

- **Time 2**: \(<0.66,0.34>\)

| \(X_{t-1}\) | \(P(X_t|X_{t-1})\) |
|-------------|------------------|
| sun | 0.9 |
| rain | 0.3 |

- **What is the weather like at time 3?**

 \[P(X_3) = \sum_{x_2} P(X_3, X_2=x_2) \]
 \[= \sum_{x_2} P(X_2=x_2) P(X_3|X_2=x_2) \]
 \[= 0.66\times \langle 0.9,0.1 \rangle + 0.34\times \langle 0.3,0.7 \rangle = \langle 0.696,0.304 \rangle \]
Forward algorithm (simple form)

- What is the state at time t?
 - $P(X_t) = \sum_{x_{t-1}} P(X_t, X_{t-1} = x_{t-1})$
 - $= \sum_{x_{t-1}} P(X_{t-1} = x_{t-1}) P(X_t | X_{t-1} = x_{t-1})$

- Iterate this update starting at $t=0$
 - This is called a recursive update: $P_t = g(P_{t-1}) = g(g(g(\ldots P_0))))$
And the same thing in linear algebra

- What is the weather like at time 2?
 - \(P(X_2) = 0.6\langle 0.9,0.1 \rangle + 0.4\langle 0.3,0.7 \rangle = \langle 0.66,0.34 \rangle \)

- In matrix-vector form:
 - \(P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix} \)

- I.e., multiply by \(T^T \), transpose of transition matrix

\[
\begin{array}{c|cc}
X_{t-1} & P(X_t|X_{t-1}) \\
\hline
\text{sun} & 0.9 & 0.1 \\
\text{rain} & 0.3 & 0.7 \\
\end{array}
\]
Stationary Distributions

- The limiting distribution is called the **stationary distribution** \(P_\infty \) of the chain.
- It satisfies \(P_\infty = P_{\infty+1} = T^T P_\infty \).
- Solving for \(P_\infty \) in the example:

 \[
 \begin{pmatrix}
 0.9 & 0.3 \\
 0.1 & 0.7
 \end{pmatrix}
 \begin{pmatrix}
 p \\
 1-p
 \end{pmatrix}
 =
 \begin{pmatrix}
 p \\
 1-p
 \end{pmatrix}

 0.9p + 0.3(1-p) = p

 p = 0.75

 Stationary distribution is \(<0.75, 0.25>\) **regardless of starting distribution**.
Hidden Markov Models
Hidden Markov Models

- Usually the true state is not observed directly

- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence E at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables
Example: Weather HMM

- An HMM is defined by:
 - Initial distribution: \(P(X_0) \)
 - Transition model: \(P(X_t | X_{t-1}) \)
 - Sensor model: \(P(E_t | X_t) \)

| \(W_{t-1} \) | \(P(W_t | W_{t-1}) \) |
|-----------|----------------|
| sun | rain |
| sun | 0.9 | 0.1 |
| rain | 0.3 | 0.7 |

| \(W_t \) | \(P(U_t | W_t) \) |
|------------|-------------------|
| true | false |
| sun | 0.2 | 0.8 |
| rain | 0.9 | 0.1 |
HMM as probability model

- Joint distribution for Markov model: \(P(X_0, \ldots, X_T) = P(X_0) \prod_{t=1}^{T} P(X_t | X_{t-1}) \)
- Joint distribution for hidden Markov model:
 \[
P(X_0, X_1, \ldots, X_T, E_T) = P(X_0) \prod_{t=1}^{T} P(X_t | X_{t-1}) P(E_t | X_t)
\]
- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:
\(X_{a:b} = X_a, X_{a+1}, \ldots, X_b \)
Real HMM Examples

- **Speech recognition HMMs:**
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)

- **Machine translation HMMs:**
 - Observations are words (tens of thousands)
 - States are translation options

- **Robot tracking:**
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

- **Molecular biology:**
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.
Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - *belief state*—input to the decision process of a rational agent

- **Prediction**: $P(X_{t+k} | e_{1:t})$ for $k > 0$
 - evaluation of possible action sequences; like filtering without the evidence

- **Smoothing**: $P(X_k | e_{1:t})$ for $0 \leq k < t$
 - better estimate of past states, essential for learning

- **Most likely explanation**: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel
Inference tasks

Filtering: $P(X_t | e_{1:t})$

Prediction: $P(X_{t+k} | e_{1:t})$

Smoothing: $P(X_k | e_{1:t}), k < t$

Explanation: $P(X_{1:t} | e_{1:t})$
Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t | e_{1:t})$ over time.

We start with f_0 in an initial setting, usually uniform.

Filtering is a fundamental task in engineering and science.

The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations; 788,000 papers on Google Scholar.
Example: Robot Localization

Example from Michael Pfeiffer

$t=0$

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.
Example: Robot Localization

Lighter grey: was *possible* to get the reading, but *less likely* (required 1 mistake)
Example: Robot Localization

\[t=2 \]
Example: Robot Localization
Example: Robot Localization

\[t = 4 \]
Example: Robot Localization

\[t = 5 \]
Aim: devise a \textit{recursive filtering} algorithm of the form

\[P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t})) \]

\[P(X_{t+1} | e_{1:t+1}) = \]
Filtering algorithm

- **Aim:** devise a *recursive filtering* algorithm of the form
 \[
 P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))
 \]

- \[
 P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})
 \]

- \[
 = \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})
 \]

- \[
 = \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})
 \]

- \[
 = \frac{P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})}{P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)}
 \]

- **Apply Bayes' rule**
- **Apply conditional independence**
- **Condition on** \(X_t\)
- **Apply conditional independence**
- **Predict**
- **Update**
- **Normalize**
Filtering algorithm

\[P(X_{t+1} | e_{1:t+1}) = \alpha \, P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) \, P(X_{t+1} | x_t) \]

- **Predict**
 \[f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1}) \]
- **Update**
 Cost per time step: \(O(|X|^2) \) where \(|X| \) is the number of states
- **Normalize**
 Time and space costs are **constant**, independent of \(t \)
 \(O(|X|^2) \) is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms
And the same thing in linear algebra

- Transition matrix T, observation matrix O_t
 - Observation matrix has state likelihoods for E_t along diagonal

 - E.g., for $U_1 = \text{true}$, $O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$

- Filtering algorithm becomes

 - $f_{1:t+1} = \alpha O_{t+1}T^T f_{1:t}$

\[
\begin{array}{|c|c|c|}
\hline
X_{t-1} & P(X_t|X_{t-1}) \\
\hline
\text{sun} & \text{rain} \\
\hline
\text{sun} & 0.9 & 0.1 \\
\hline
\text{rain} & 0.3 & 0.7 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
W_t & P(U_t|W_t) \\
\hline
\text{true} & \text{false} \\
\hline
\text{sun} & 0.2 & 0.8 \\
\hline
\text{rain} & 0.9 & 0.1 \\
\hline
\end{array}
\]
Example: Weather HMM

\[
\begin{array}{ccc}
\text{Predict} & 0.6 & 0.4 \\
\text{Update} & 0.45 & 0.55 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
W_{t-1} & P(W_t | W_{t-1}) & \\
\hline
\text{sun} & \text{rain} & \\
0.9 & 0.1 & \\
\text{sun} & \text{rain} & \\
0.3 & 0.7 & \\
\end{array}
\]

\[
\begin{array}{c|c|c}
W_t & P(U_t | W_t) & \\
\hline
\text{true} & \text{false} & \\
\text{sun} & \text{rain} & \\
0.2 & 0.8 & \\
\text{rain} & \text{sun} & \\
0.9 & 0.1 & \\
\end{array}
\]
Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]
Video of Demo Pacman – Sonar
Most Likely Explanation
Inference tasks

- **Filtering**: \(P(X_t | e_{1:t}) \)
 - *belief state*—input to the decision process of a rational agent

- **Prediction**: \(P(X_{t+k} | e_{1:t}) \) for \(k > 0 \)
 - evaluation of possible action sequences; like filtering without the evidence

- **Smoothing**: \(P(X_k | e_{1:t}) \) for \(0 \leq k < t \)
 - better estimate of past states, essential for learning

- **Most likely explanation**: \(\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t}) \)
 - speech recognition, decoding with a noisy channel
Most likely explanation = most probable path

- **State trellis**: graph of states and transitions over time

 ![State trellis diagram]

 - Each arc represents some transition $x_{t-1} \to x_t$
 - Each arc has weight $P(x_t \mid x_{t-1}) P(e_t \mid x_t)$ (arcs to initial states have weight $P(x_0)$)

 - The **product** of weights on a path is proportional to that state sequence’s probability
 - Forward algorithm computes sums of paths, **Viterbi algorithm** computes best paths

\[
\begin{align*}
\arg\max_{x_{1:t}} & \, P(x_{1:t} \mid e_{1:t}) \\
& = \arg\max_{x_{1:t}} \alpha P(x_{1,t}, e_{1:t}) \\
& = \arg\max_{x_{1:t}} \, P(x_{1:t}, e_{1:t}) \\
& = \arg\max_{x_{1:t}} \, P(x_0) \prod_t P(x_t \mid x_{t-1}) P(e_t \mid x_t)
\end{align*}
\]
Forward Algorithm (sum)

For each state at time \(t \), keep track of the total probability of all paths to it

\[
f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) f_{1:t}
\]

Viterbi Algorithm (max)

For each state at time \(t \), keep track of the maximum probability of any path to it

\[
m_{1:t+1} = \text{VITERBI}(m_{1:t}, e_{t+1}) = P(e_{t+1} | X_{t+1}) \max_{x_t} P(X_{t+1} | x_t) m_{1:t}
\]
Viterbi algorithm contd.

Time complexity? \(O(|X|^2 T) \)

Space complexity? \(O(|X| T) \)

Number of paths? \(O(|X|^T) \)

\[
\begin{array}{l}
\begin{array}{l}
X_0 \\
U_1 = \text{true} \\
U_2 = \text{false} \\
U_3 = \text{true}
\end{array}
\end{array}
\]
Viterbi in negative log space

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

Viterbi is essentially breadth-first graph search
What about A*?