1 Variable Elimination

Using the Bayes Net shown below, we want to compute $P(Y \mid +z)$. All variables have binary domains. We run variable elimination, with the following variable elimination ordering: X, T, U, V, W.

After inserting evidence, we have the following factors to start out with:

$$P(T), P(U\mid T), P(V\mid T), P(W\mid T), P(X\mid T), P(Y\mid V, W), P(\pmz X)$$

(a) When eliminating X we generate a new factor f_1 as follows,

$$f_1(\pmz T) = \sum_x P(x\mid T)P(\pmz x)$$

which leaves us with the factors:

$$P(T), P(U\mid T), P(V\mid T), P(W\mid T), P(Y\mid V, W), f_1(\pmz T)$$

(b) When eliminating T we generate a new factor f_2 as follows, which leaves us with the factors:

$$f_2(U, V, W, +z) = \sum_t P(t)P(U\mid t)P(V\mid t)P(W\mid t)f_1(\pmz t) \quad P(Y\mid V, W), f_2(U, V, W, +z)$$

(c) When eliminating U we generate a new factor f_3 as follows, which leaves us with the factors:

$$f_3(V, W, +z) = \sum_u f_2(u, V, W, +z) \quad P(Y\mid V, W), f_3(V, W, +z)$$

Note that U could have just been deleted from the original graph, because $\sum_u P(U\mid t) = 1$. We can see this in the graph: we can remove any leaf node that is not a query variable or an evidence variable.

(d) When eliminating V we generate a new factor f_4 as follows, which leaves us with the factors:

$$f_4(W, Y, +z) = \sum_v f_3(v, W, +z)P(Y\mid v, W) \quad f_4(W, Y, +z)$$

(e) When eliminating W we generate a new factor f_5 as follows, which leaves us with the factors:

$$f_5(Y, +z) = \sum_w f_4(w, Y, +z) \quad f_5(Y, +z)$$

(f) How would you obtain $P(Y \mid +z)$ from the factors left above: Simply renormalize $f_5(Y, +z)$ to obtain $P(Y \mid +z)$. Concretely,

$$P(y \mid +z) = \frac{f_5(y, +z)}{\sum_{y'} f_5(y', +z)}$$
(g) What is the size of the largest factor that gets generated during the above process? $f_2(U, V, W, +z)$. This contains 3 unconditioned variables, so it will have $2^3 = 8$ entries (U, V, W are binary variables, and we only need to store the entries for $+z$ for each possible setting of these variables).

(h) Does there exist a better elimination ordering (one which generates smaller largest factors)? Yes. One such ordering is X, U, T, V, W. All factors generated with this ordering contain at most 2 unconditioned variables, so the tables will have at most $2^2 = 4$ entries (as all variables are binary).
2 Sampling and Dynamic Bayes Nets

We would like to analyze people’s ice cream eating habits on sunny and rainy days. Suppose we consider the weather, along with a person’s ice-cream eating, over the span of two days. We’ll have four random variables: W_1 and W_2 stand for the weather on days 1 and 2, which can either be rainy R or sunny S, and the variables I_1 and I_2 represent whether or not the person ate ice cream on days 1 and 2, and take values T (for truly eating ice cream) or F. We can model this as the following Bayes Net with these probabilities.

![Bayes Net Diagram]

| W_1 | $P(W_1)$ | W_2 | $P(W_2|W_1)$ |
|-------|----------|-------|---------------|
| S | 0.6 | S | 0.7 |
| R | 0.4 | R | 0.3 |
| | | S | 0.5 |
| | | R | 0.5 |

Suppose we produce the following samples of (W_1, I_1, W_2, I_2) from the ice-cream model:

1. What is $P(W_2 = R)$, the probability that sampling assigns to the event $W_2 = R$?
 Number of samples in which $W_2 = R$: 5. Total number of samples: 10. Answer $5/10 = 0.5$.

2. Cross off samples above which are rejected by rejection sampling if we’re computing $P(W_2| I_1 = T, I_2 = F)$.

 Rejection sampling seems to be wasting a lot of effort, so we decide to switch to likelihood weighting.
 Assume we generate the following six samples given the evidence $I_1 = T$ and $I_2 = F$:

 $(W_1, I_1, W_2, I_2) = \{ (S, T, R, F), (R, T, R, F), (S, T, R, F), (S, T, S, F), (S, T, S, F), (R, T, S, F) \}$

3. What is the weight of the first sample (S, T, R, F) above?

 The weight given to a sample in likelihood weighting is

 $\prod \text{Pr}(e|\text{Parents}(e))$.

 Evidence variables e

 In this case, the evidence is $I_1 = T, I_2 = F$. The weight of the first sample is therefore

 $w = \text{Pr}(I_1 = T|W_1 = S) \cdot \text{Pr}(I_2 = F|W_2 = R) = 0.9 \cdot 0.8 = 0.72$

4. Use likelihood weighting to estimate $P(W_2| I_1 = T, I_2 = F)$.

 The sample weights are given by

<table>
<thead>
<tr>
<th>(W_1, I_1, W_2, I_2)</th>
<th>w</th>
<th>(W_1, I_1, W_2, I_2)</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, T, R, F</td>
<td>0.72</td>
<td>S, T, S, F</td>
<td>0.09</td>
</tr>
<tr>
<td>R, T, R, F</td>
<td>0.16</td>
<td>S, T, S, F</td>
<td>0.09</td>
</tr>
<tr>
<td>S, T, R, F</td>
<td>0.72</td>
<td>R, T, S, F</td>
<td>0.02</td>
</tr>
</tbody>
</table>

 To compute the probabilities, we thus normalize the weights and find

 $\hat{P}(W_2 = R| I_1 = T, I_2 = F) = \frac{0.72 + 0.16 + 0.72}{0.72 + 0.16 + 0.72 + 0.09 + 0.09 + 0.02} = 0.889$

 $\hat{P}(W_2 = S| I_1 = T, I_2 = F) = 1 - 0.889 = 0.111$.

3