CS 188: Artificial Intelligence
Learning III: Linear regression & Perceptron

Agent Testing Today!

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley
Recap: Decision Tree

- Iterative process, select the most distinguishing/informative attribute to split on next
- Entropy: measure uncertainty in a probability distribution $\langle p_1, \ldots, p_n \rangle$
 \[
 H(\langle p_1, \ldots, p_n \rangle) = \text{______________}
 \]
 - Quiz: Higher entropy means _____ uncertainty.
 A. more
 B. less
Recap: Decision Tree

- Iterative process, select the most distinguishing/informative attribute to split on next
- Entropy: measure uncertainty in a probability distribution \(\langle p_1, \ldots, p_n \rangle \)
 \[
 H(\langle p_1, \ldots, p_n \rangle) = \sum_i -p_i \log p_i
 \]
- Information gain:
 - reduction on entropy with additional information
- Learning decision tree:
 - Iterative process, selecting the attribute with the highest information gain to split on
Recap: Model Selection & Hyperparameter Tuning

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set

- Features: attribute-value pairs which characterize each x

- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never “peek” at the test set!

- Evaluation
 - Accuracy: fraction of instances predicted correctly

- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - Underfitting: fits the training set poorly
Supervised Learning

- **Classification** = learning f with discrete output value
- **Regression** = learning f with real-valued output value
Linear Regression

Hypothesis family: Linear functions
Linear Regression

(x, y=f(x)), x: house size, y: house price

Berkeley house prices, 2009
Linear regression = fitting a straight line/hyperplane

Prediction: $h_w(x) = w_0 + w_1 x$

Berkeley house prices, 2009
Prediction error

Error on one instance: $y - h_w(x)$
Find w

- Define loss function

- Find w^* to minimize loss function
Least squares: Minimizing squared error

- L2 loss function: sum of squared errors over all examples
 - Loss = ____________________________
- We want the weights w^* that minimize loss
- At w^* the derivatives of loss w.r.t. each weight are zero:
 - $\frac{\partial \text{Loss}}{\partial w_0} = ____________________________$
 - $\frac{\partial \text{Loss}}{\partial w_1} = ____________________________$
- Exact solutions for N examples:
 - $w_1 = [N\Sigma_j x_j y_j - (\Sigma_j x_j)(\Sigma_j y_j)]/[N\Sigma_j x_j^2 - (\Sigma_j x_j)^2]$ and $w_0 = 1/N [\Sigma_j y_j - w_1 \Sigma_j x_j]$
- For the general case where x is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $w^* = (X^T X)^{-1} X^T y$
Least squares: Minimizing squared error

- **L2 loss function**: sum of squared errors over all examples
 - Loss = \(\sum_j (y_j - h_w(x_j))^2 = \sum_j (y_j - (w_0 + w_1 x_j))^2 \)

- We want the weights \(w^* \) that minimize loss.

- At \(w^* \) the derivatives of loss w.r.t. each weight are zero:
 - \(\frac{\partial \text{Loss}}{\partial w_0} = -2 \sum_j (y_j - (w_0 + w_1 x_j)) = 0 \)
 - \(\frac{\partial \text{Loss}}{\partial w_1} = -2 \sum_j (y_j - (w_0 + w_1 x_j)) x_j = 0 \)

- Exact solutions for \(N \) examples:
 - \(w_1 = \frac{N \sum_j x_j y_j - (\sum_j x_j)(\sum_j y_j)}{N \sum_j x_j^2 - (\sum_j x_j)^2} \) and \(w_0 = \frac{1}{N} [\sum_j y_j - w_1 \sum_j x_j] \)

- For the general case where \(x \) is an n-dimensional vector
 - \(X \) is the data matrix (all the data, one example per row); \(y \) is the column of labels
 - \(w^* = (X^T X)^{-1} X^T y \)
Regression vs Classification

- Linear regression when output is binary, $y \in \{0, 1\}$
 - $h_w(x) = w_0 + w_1 x$

- Linear classification
 - Used with discrete output values
 - Threshold a linear function
 - $h_w(x) = 1$, if $w_0 + w_1 x \geq 0$
 - $h_w(x) = 0$, if $w_0 + w_1 x < 0$
 - Activation function g
Threshold perceptron as linear classifier
A threshold perceptron is a single unit that outputs
- \[y = h_w(x) = 1 \text{ when } w \cdot x \geq 0 \]
 \[= 0 \text{ when } w \cdot x < 0 \]

In the input vector space
- Examples are points \(x \)
- The equation \(w \cdot x = 0 \) defines a hyperplane
- One side corresponds to \(y = 1 \)
- Other corresponds to \(y = 0 \)
Dear Stuart, I'm leaving Macrosoft to return to academia. The money is great here but I prefer to be free to do my own research; and I really love teaching undergrads!

Do I need to finish my BA first before applying?

Best wishes

Bill

\[
\begin{align*}
 w_0 & : -3 \\
 w_{\text{free}} & : 4 \\
 w_{\text{money}} & : 2 \\
 x_0 & : 1 \\
 x_{\text{free}} & : 1 \\
 x_{\text{money}} & : 1 \\
 w \cdot x &= -3x_1 + 4x_1 + 2x_1 = 3
\end{align*}
\]
Need a different solution than before given the characteristic of perceptron
Perceptron learning rule

- If true $y \neq h_w(x)$ (an error), adjust the weights
- If $w.x < 0$ but the output should be $y=1$
 - This is called a false negative
 - Should increase weights on positive inputs
 - Should decrease weights on negative inputs
- If $w.x > 0$ but the output should be $y=0$
 - This is called a false positive
 - Should decrease weights on positive inputs
 - Should increase weights on negative inputs
- The perceptron learning rule does this:
 - $w \leftarrow w + \alpha (y - h_w(x)) x$
Perceptron Learning Rule (Different setup)

- Start with weights = 0
- For each training instance:
 - Classify with current weights

 \[y = \begin{cases}
 +1 & \text{if } w \cdot x \geq 0 \\
 -1 & \text{if } w \cdot x < 0
 \end{cases} \]

- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y is -1.

\[w = w + y \cdot x \]

\[y = h_w(x) = 1 \text{ when } w \cdot x \geq 0 \]
\[= -1 \text{ when } w \cdot x < 0 \]
Dear Stuart, I wanted to let you know that I have decided to leave Macrosoft and return to academia. The money is great here but I prefer to be free to pursue more interesting research and I really love teaching undergraduates! Do I need to finish my BA first before applying?

Best wishes
Bill

\[w \leftarrow w + \alpha (y - h_w(x)) x \]
\[\alpha = 0.5 \]

\[w \leftarrow (-3,4,2) + 0.5 (0 - 1) (1,1,1) \]
\[= (-3.5,3.5,1.5) \]
A learning problem is **linearly separable** iff there is some hyperplane exactly separating positive from negative examples.

Convergence: if the training data are **separable**, perceptron learning applied repeatedly to the training set will eventually converge to a perfect separator.
Example: Earthquakes vs nuclear explosions

63 examples, 657 updates required
A learning problem is **linearly separable** iff there is some hyperplane exactly separating +ve from –ve examples.

Convergence: if the training data are separable, perceptron learning applied repeatedly to the training set will eventually converge to a perfect separator.

Convergence: if the training data are **non-separable**, perceptron learning will converge to a minimum-error solution provided the learning rate α is decayed appropriately (e.g., $\alpha=1/t$).
Perceptron learning with fixed α

71 examples, 100,000 updates
fixed $\alpha = 0.2$, no convergence
Perceptron learning with decaying α

71 examples, 100,000 updates
decaying $\alpha = 1000/(1000 + t)$, near-convergence
Non-Separable Case

Even the best linear boundary makes at least one mistake.
Other Linear Classifiers

- Perceptron is perfectly happy as long as it separates the training data.

- Logistic Regression:
 \[g_{\text{sigmoid}}(x) = \frac{1}{1 + e^{-x}} \]

- Support Vector Machines (SVM):
 - Maximize margin between boundary and nearest points.
Logistic Regression

- Sigmoid function

\[\phi(z) = \frac{1}{1 + e^{-z}} \]