CS 188: Artificial Intelligence

MDP II: Value/Policy Iteration

Instructor: Stuart Russell and Dawn Song

University of California, Berkeley
Recap: Optimal Quantities

- The value (expected utility) of π in s_0 is written $U^{\pi}(s_0)$
 - It’s the sum over all possible state sequences of (discounted sum of rewards) x (probability of state sequence)

 $$U^{\pi}(s_0) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t), s_{t+1}) \right]$$

- The optimal policy:
 - $\pi^*(s) = \text{optimal action from state } s$
 - Gives highest $U^{\pi}(s)$ for any π

- The value (utility) of a state s:
 - $U^*(s) = U^{\pi^*}(s) = \text{expected utility starting in } s \text{ and acting optimally}$

- The value (utility) of a q-state (s,a):
 - $Q^*(s,a) = \text{expected utility of taking action } a \text{ in state } s \text{ and (thereafter) acting optimally}$
 - $U^*(s) = \max_a Q^*(s,a)$
Recap: Bellman equations (Shapley, 1953)

- The value/utility of a state is
 - The expected reward for the next transition plus the discounted value/utility of the next state, assuming the agent chooses the optimal action

- Hence we have a recursive definition of value (Bellman equation):
 \[U(s) = \max_{a \in A(s)} \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma U(s')] \]

- Similarly, Bellman equation for Q-functions
 \[Q(s, a) = \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma U(s')] \]
 \[= \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma \max_{a'} Q(s', a')] \]
Recap: Value Iteration

- Start with (say) $U_0(s) = 0$ and some termination parameter ϵ
- Repeat until convergence (i.e., until all updates smaller than ϵ)
 - Do a **Bellman update** (essentially one ply of expectimax) from each state:
 $$U_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s' \mid a, s) [R(s,a,s') + \gamma U_k(s')]$$
- Theorem: will converge to unique optimal values

\[U \leftarrow BU \]
How do we know it will converge?*

- **New concept: contraction**
 - If some operator F is a contraction by a factor, it brings any pair of objects **closer** to each other (according to some metric $d(\, , \,)$)
 - For any x, y, $d(Fx, Fy) \leq c \, d(x, y)$ where $c < 1$
 - If F is a contraction it has a unique fixed point z (i.e., $Fz = z$)

- **Reminder:** Value iteration is just $U_{k+1} \leftarrow BU_k$

- **The Bellman update B is a contraction by γ**
 - Metric is the **max norm**: $\|V - W\| = \max_s |V(s) - W(s)|$
 - Proof: follows from definition of B, i.e., Bellman equation

- **What’s the fixed point for B?**
 - $BU^* = U^*$

* E.g., $Fx = x/2$
How fast does VI converge?

- Look at what happens to the distance between U_k and U^*
 $$||U_{k+1} - U^*|| \leq ||U_k - U^*||$$
How fast does VI converge?

- Look at what happens to the distance between U_k and U^*

$$||U_{k+1} - U^*|| = ||BU_k - B^*||$$

(definition of U_{k+1} from VI update)

$$= ||BU_k - B^*||$$

(U^* is the fixed point of B)

$$\leq \gamma ||U_k - U^*||$$

(B is a contraction by γ)

- I.e., the error is reduced by at least a factor γ on every iteration

 - Exponentially fast convergence!

 - E.g., if $\gamma=0.9$, 22 iterations reduces error by 10

 - 44 iterations reduces error by 100

 - 220 iterations reduces error by 10^{10}
How do we know the answer is (nearly) right?

- VI doesn’t usually converge exactly; stops when change $< \varepsilon(1-\gamma)/\gamma$

- I.e., $\|U_{k+1} - U_k\| < \varepsilon(1-\gamma)/\gamma$

- What about $\|U_{k+1} - U^*\|$ when $\|U_{k+1} - U_k\| < \varepsilon(1-\gamma)/\gamma$?

- We need some connection between $\|U_{k+1} - U_k\|$ and $\|U_{k+1} - U^*\|$.

- Useful properties:
 - $\|U_{k+1} - U^*\| \leq \gamma \|U_k - U^*\|$
 - Triangle inequality!

$\|U_k - U^*\| \leq \|U_{k+1} - U_k\| + \|U_{k+1} - U^*\|$
How do we know the answer is (nearly) right?

- VI doesn’t usually converge exactly; stops when change $< \varepsilon(1-\gamma)/\gamma$
- i.e., $||U_{k+1} - U_k|| < \varepsilon(1-\gamma)/\gamma$
- What about $||U_{k+1} - U^*||$ when $||U_{k+1} - U_k|| < \varepsilon(1-\gamma)/\gamma$?
- We need some connection between $||U_{k+1} - U_k||$ and $||U_{k+1} - U^*||$
 - Triangle inequality!
 - $||U_k - U^*|| \leq ||U_{k+1} - U_k|| + ||U_{k+1} - U^*||$
 - $1/\gamma \cdot ||U_{k+1} - U^*|| \leq ||U_{k+1} - U_k|| + ||U_{k+1} - U^*||$
 - $(1/\gamma - 1) \cdot ||U_{k+1} - U^*|| \leq ||U_{k+1} - U_k||$
 - $(1/\gamma - 1) \cdot ||U_{k+1} - U^*|| < \varepsilon(1-\gamma)/\gamma$
 - $||U_{k+1} - U^*|| < \varepsilon$
 - i.e., when we stop, the max-norm error in U_{k+1} is less than ε
Wait! The agent needs a policy, not a value function!

- How should the agent act given $U(s)$?
- Maximize expected utility! (as if U is correct)

- I.e., do a mini-expectimax (greedy one-step):
 \[
 \pi_U(s) = \arg\max_a \sum_{s'} P(s' \mid a, s) [R(s, a, s') + \gamma U(s')]
 \]
- This is called **policy extraction**, since it finds the policy π_U implied by the values U
How good is the policy extracted from VI?

- The quality of a policy π is measured by the **policy loss** $|| U^\pi - U^* ||$

- Let $\Pi_k = \Pi_{U_k}$ i.e. the implied policy at step k; in case you were worried:
 - When $|| U_k - U^* || \leq \epsilon$, policy loss is bounded: $|| U^{\Pi_k} - U^* || \leq 2\epsilon\gamma/(1-\gamma)$

- Let's measure the policy loss of Π_k as we run VI:
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[U_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s' | a,s) \left[R(s,a,s') + \gamma U_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
Policy Iteration
$k=12$

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Basic idea: make the implied policy in U explicit, compute its long-term implications for value
- Repeat until no change in policy:
 - Step 1: Policy evaluation: calculate value U^{T_k} for current policy π_k
 - Step 2: Policy improvement: extract the new implied policy π_{k+1} from U^{T_k}

- It’s still optimal!
- Can converge (much) faster under some conditions
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state.
 - though the tree’s value would depend on which policy we fixed.
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

- Define the utility of a state s, under a fixed policy π:

 $$U^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi$$

- Recursive relation (one-step look-ahead / Bellman equation):

\[
U_i(s) = \sum_{s'} P(s' \mid s, \pi_i(s)) [R(s, \pi_i(s), s') + \gamma U_i(s')].
\]
Policy Evaluation

- How do we calculate the U’s for a fixed policy \(\pi \)?

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)
 \[U_0^{\pi}(s) = 0 \]
 \[U_{i+1}(s) \leftarrow \sum_{s'} P(s' | s, \pi_i(s)) [R(s, \pi_i(s), s') + \gamma U_i(s')] \]

 - Efficiency: \(O(S^2) \) per iteration

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Iteration
Policy Iteration

- **Evaluation:** For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 U_{i+1}(s) \leftarrow \sum_{s'} P(s' \mid s, \pi_i(s)) [R(s, \pi_i(s), s') + \gamma U_i(s')] \]

- **Improvement:** For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg\max_a \sum_{s'} P(s' \mid s, a) \left[R(s, a, s') + \gamma U_i(s') \right] \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - Policy evaluation reveals long-term effects of policy, unlike local value updates
 - After the policy is evaluated (looking at those long-term effects), a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs

- In fact, any fair sequence of value and/or policy updates on any states will converge to an optimal solution!
Summary: MDP Algorithms

- So you want to…
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal