Uncertainty

- The real world is rife with uncertainty!
 - E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?

- Problems:
 - partial observability (road state, other drivers’ plans, etc.)
 - noisy sensors (radio traffic reports, Google maps)
 - immense complexity of modelling and predicting traffic, security line, etc.
 - lack of knowledge of world dynamics (will tire burst? need COVID test?)

- Probabilistic assertions summarize effects of ignorance and laziness

- Combine probability theory + utility theory -> decision theory
 - Maximize expected utility: \(a^* = \arg\max_a \sum_s P(s \mid a) U(s) \)
Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

- Sensors are noisy, but we know $P(\text{Color}(x,y) \mid \text{DistanceFromGhost}(x,y))$

<table>
<thead>
<tr>
<th>$P(\text{red} \mid 3)$</th>
<th>$P(\text{orange} \mid 3)$</th>
<th>$P(\text{yellow} \mid 3)$</th>
<th>$P(\text{green} \mid 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.15</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Video of Demo Ghostbusters – No probability
Basic laws of probability

- Begin with a set Ω of possible worlds
 - E.g., 6 possible rolls of a die, $\{1, 2, 3, 4, 5, 6\}$

- A **probability model** assigns a number $P(\omega)$ to each world ω

- These numbers must satisfy
 - $0 \leq P(\omega) \leq 1$
 - $\sum_{\omega \in \Omega} P(\omega) = 1$
Basic laws contd.

- An event is any subset of Ω
 - E.g., “roll < 4” is the set {1,2,3}
 - E.g., “roll is odd” is the set {1,3,5}

- The probability of an event is the sum of probabilities over its worlds
 - $P(A) = \sum_{\omega \in A} P(\omega)$
 - E.g., $P(\text{roll < 4}) = P(1) + P(2) + P(3) = 1/2$

- De Finetti (1931): anyone who bets according to probabilities that violate these laws can be forced to lose money on every set of bets
Random Variables

- A random variable (usually denoted by a capital letter) is some aspect of the world about which we (may) be uncertain.
- Formally a **deterministic function** of \(\omega \).
- The **range** of a random variable is the set of possible values.
 - \(\text{Odd} = \) Is the dice roll an odd number? \(\rightarrow \) \{true, false\}
 - e.g. \(\text{Odd}(1) = \text{true}, \text{Odd}(6) = \text{false} \)
 - often write the event \(\text{Odd}=\text{true} \) as \(\text{odd} \), \(\text{Odd}=\text{false} \) as \(\neg \text{odd} \)
 - \(T = \) Is it hot or cold? \(\rightarrow \) \{hot, cold\}
 - \(D = \) How long will it take to get to the airport? \(\rightarrow [0, \infty) \)
 - \(L_{\text{Ghost}} = \) Where is the ghost? \(\rightarrow \{(0,0), (0,1), \ldots\} \)
- The **probability distribution** of a random variable \(X \) gives the probability for each value \(x \) in its range (probability of the event \(X=x \))
 - \(P(X=x) = \sum_{\{\omega : X(\omega) = x\}} P(\omega) \)
 - \(P(x) \) for short (when unambiguous)
 - \(P(X) \) refers to the entire distribution (think of it as a vector or table).
Probability Distributions

- Associate a probability with each value; sums to 1
 - Temperature:
 - $P(T)$
T	P
hot	0.5
cold	0.5
 - Weather:
 - $P(W)$
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0
 - Joint distribution
 - $P(T,W)$
 | Weather | Temperature | |
|---|---|---|
 | sun | hot | 0.45 |
 | rain | 0.02 |
 | fog | 0.03 |
 | meteor | 0.00 |
Making possible worlds

- In many cases we
 - begin with random variables and their domains
 - construct possible worlds as assignments of values to all variables

- E.g., two dice rolls $Roll_1$ and $Roll_2$
 - How many possible worlds?
 - What are their probabilities?

- Size of distribution for n variables with range size d?

- For all but the smallest distributions, cannot write out by hand!
Probabilities of events

- Recall that the probability of an event is the sum of probabilities of its worlds:
 \[P(A) = \sum_{\omega \in A} P(\omega) \]
- So, given a joint distribution over all variables, can compute any event probability!
 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR not foggy?

<table>
<thead>
<tr>
<th>Temperature</th>
<th>hot</th>
<th>cold</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.45</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
<td>0.27</td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables.
- **Marginalization (summing out):** Collapse a dimension by adding

\[P(X=x) = \sum_y P(X=x, Y=y) \]

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hot</td>
</tr>
<tr>
<td>sun</td>
<td>0.45</td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[P(T) \]
\[P(W) \]
A simple relation between joint and conditional probabilities

- In fact, this is taken as the *definition* of a conditional probability

\[
P(a \mid b) = \frac{P(a, b)}{P(b)}
\]

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>hot 0.45</td>
</tr>
<tr>
<td></td>
<td>cold 0.15</td>
</tr>
<tr>
<td>rain</td>
<td>0.02</td>
</tr>
<tr>
<td>fog</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[
P(W=s \mid T=c) = \frac{P(W=s, T=c)}{P(T=c)} = 0.15/0.50 = 0.3
\]

\[
= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)
= 0.15 + 0.08 + 0.27 + 0.00 = 0.50
\]
Conditional Distributions

- Distributions for one set of variables given another set

| Weather | Temperature | $P(W | T=h)$ | $P(W | T=c)$ | $P(W | T)$ |
|-----------|-------------|-------------|-------------|-----------|
| | hot | cold | | |
| sun | 0.45 | 0.15 | 0.90 | 0.30 |
| rain | 0.02 | 0.08 | 0.04 | 0.16 |
| fog | 0.03 | 0.27 | 0.06 | 0.54 |
| meteor | 0.00 | 0.00 | 0.00 | 0.00 |
Normalizing a distribution

- (Dictionary) To bring or restore to a normal condition

- Procedure:
 - Multiply each entry by $\alpha = 1/(\text{sum over all entries})$

All entries sum to ONE

$\alpha = 1/0.50 = 2$

Normalize

$P(W,T) = P(W,T=c)$

$P(W|T=c) = P(W,T=c)/P(T=c) = \alpha P(W,T=c)$

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>$P(W,T)$</th>
<th>$P(W,T=c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>hot</td>
<td>0.15</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>rain</td>
<td>hot</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>fog</td>
<td>hot</td>
<td>0.27</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>meteor</td>
<td>hot</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

$P(W|T=c) = P(W,T=c)/P(T=c) = \alpha P(W,T=c)$

Normalize

$\alpha = 1/0.50 = 2$
The Product Rule

- Sometimes have conditional distributions but want the joint

\[P(a \mid b) P(b) = P(a, b) \]

\[P(a \mid b) = \frac{P(a, b)}{P(b)} \]
The Product Rule: Example

\[P(W \mid T) \ P(T) = P(W, T) \]

\[
\begin{array}{c|c|c}
P(W \mid T) & T & P(T) \\
\hline
hot & 0.90 & 0.30 \\
0.04 & 0.16 & 0.54 \\
0.06 & 0.00 & 0.00 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c}
T & P \\
\hline
hot & 0.5 \\
cold & 0.5 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c}
P(W, T) & \text{Temperature} & \\
\hline
\text{sun} & 0.45 & 0.15 \\
\text{rain} & 0.02 & 0.08 \\
\text{fog} & 0.03 & 0.27 \\
\text{meteor} & 0.00 & 0.00 \\
\hline
\end{array}
\]
The Chain Rule

- A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:

\[P(x_1, x_2, x_3) = P(x_3 | x_1, x_2) P(x_1, x_2) = P(x_3 | x_1, x_2) P(x_2 | x_1) P(x_1) \]

\[P(x_1, x_2, \ldots, x_n) = \prod_i P(x_i | x_1, \ldots, x_{i-1}) \]
Probabilistic Inference

- Probabilistic inference: compute a desired probability from a probability model
 - Typically for a **query variable** given **evidence**
 - E.g., \(P(\text{airport on time} \mid \text{no accidents}) = 0.90 \)
 - These represent the agent’s **beliefs** given the evidence

- Probabilities change with new evidence:
 - \(P(\text{airport on time} \mid \text{no accidents, 5 a.m.}) = 0.95 \)
 - \(P(\text{airport on time} \mid \text{no accidents, 5 a.m., raining}) = 0.80 \)
 - Observing new evidence causes **beliefs to be updated**
Inference by Enumeration

- **General case:**
 - Evidence variables: \(E_1, \ldots, E_k = e_1, \ldots, e_k \)
 - Query* variable: \(Q \)
 - Hidden variables: \(H_1, \ldots, H_r \)

- **We want:**
 \[P(Q | e_1, \ldots, e_k) \]

- **Probability model** \(P(X_1, \ldots, X_n) \) is given

- **Step 1:** Select the entries consistent with the evidence

- **Step 2:** Sum out \(H \) from model to get joint of Query and evidence

- **Step 3:** Normalize

\[
P(Q | e_1, \ldots, e_k) = \alpha \frac{P(Q, e_1, \ldots, e_k)}{P(Q, e_1, \ldots, e_k)}
\]

* Works fine with multiple query variables, too
Inference by Enumeration

- **P(W)?**

<table>
<thead>
<tr>
<th>Season</th>
<th>Temp</th>
<th>Weather</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.35</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>rain</td>
<td>0.01</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>fog</td>
<td>0.01</td>
</tr>
<tr>
<td>summer</td>
<td>hot</td>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>fog</td>
<td>0.09</td>
</tr>
<tr>
<td>summer</td>
<td>cold</td>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>rain</td>
<td>0.01</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>fog</td>
<td>0.02</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>meteor</td>
<td>0.00</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>fog</td>
<td>0.18</td>
</tr>
<tr>
<td>winter</td>
<td>cold</td>
<td>meteor</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- $P(W)$?

- $P(W \mid \text{winter})$?
Inference by Enumeration

- $P(W)$?

- $P(W \mid \text{winter})$?

- $P(W \mid \text{winter}, \text{hot})$?
Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution
 - $O(d^n)$ data points to estimate the entries in the joint distribution
Bayes Rule
Bayes’ Rule

- Write the product rule both ways:
 \[P(a \mid b) \ P(b) = P(a, b) = P(b \mid a) \ P(a) \]

- Dividing left and right expressions, we get:
 \[P(a \mid b) = \frac{P(b \mid a) \ P(a)}{P(b)} \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Describes an “update” step from prior \(P(a) \) to posterior \(P(a \mid b) \)
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!

That’s my rule!
Inference with Bayes’ Rule

- Example: Diagnostic probability from causal probability:

\[P(cause \mid effect) = \frac{P(effect \mid cause) P(cause)}{P(effect)} \]

- Example:
 - M: meningitis, S: stiff neck

\[
\begin{align*}
P(s \mid m) &= 0.8 \\
P(m) &= 0.0001 \\
P(s) &= 0.01
\end{align*}
\]

\[
P(m \mid s) = \frac{P(s \mid m) P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.01}
\]

- Note: posterior probability of meningitis still very small: 0.008 (80x bigger – why?)
- Note: you should still get stiff necks checked out! Why?
Next time

- Independence
- Conditional independence
- Bayes nets