CS 188: Artificial Intelligence

First-Order Logic

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley
Spectrum of representations

(a) Atomic
Search, game-playing

(b) Factored
CSPs, planning, propositional logic, Bayes nets, neural nets

(b) Structured
First-order logic, databases, probabilistic programs
Expressive power

- **Rules of chess:**
 - 100,000 pages in propositional logic
 - 1 page in first-order logic

- **Rules of Pacman:**
 - $\forall t \ \text{Alive}(t) \iff
 [\text{Alive}(t-1) \land \neg \exists \ g,x,y \ [\text{Ghost}(g) \land \text{At}(\text{Pacman},x,y,t-1) \land
 \text{At}(g,x,y,t-1)]]]
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)

How many possible worlds?
A term refers to an object; it can be
- A constant symbol, e.g., A, B, EvilKingJohn
 - The possible world fixes these referents
- A function symbol with terms as arguments, e.g., BFF(EvilKingJohn)
 - The possible world specifies the value of the function, given the referents of the terms
 - BFF(EvilKingJohn) -> BFF(2) -> 3
- A logical variable, e.g., x
 - (more later)
Syntax and semantics: Atomic sentences

- An atomic sentence is an elementary proposition (cf symbols in PL)
 - A predicate symbol with terms as arguments, e.g., \(\text{Knows}(A, \text{BFF}(B))\)
 - True iff the objects referred to by the terms are related in the relation referred to by the predicate
 - \(\text{Knows}(A, \text{BFF}(B)) \rightarrow \text{Knows}(1, \text{BFF}(2)) \rightarrow \text{Knows}(1, 3) \rightarrow F\)
 - An equality between terms, e.g., \(\text{BFF}(\text{BFF}(\text{BFF}(B))) = B\)
 - True iff the terms refer to the same objects
 - \(\text{BFF}(\text{BFF}(\text{BFF}(B))) = B \rightarrow \text{BFF}(\text{BFF}(\text{BFF}(2))) = 2 \rightarrow \text{BFF}(\text{BFF}(3)) = 2\)
 - \(\rightarrow \text{BFF}(1) = 2 \rightarrow 2 = 2 \rightarrow T\)
Syntax and semantics: Complex sentences

- Sentences with logical connectives \(-\alpha, \ \alpha \land \beta, \ \alpha \lor \beta, \ \alpha \Rightarrow \beta, \ \alpha \Leftrightarrow \beta\)
- Sentences with universal or existential quantifiers, e.g.,
 - \(\forall x \text{ Knows}(x, \text{BFF}(x))\)
 - True in world \(w\) iff true in all extensions of \(w\) where \(x\) refers to an object in \(w\)
 - \(x \rightarrow 1: \text{Knows}(1, \text{BFF}(1)) \rightarrow \text{Knows}(1,2) \rightarrow T\)
 - \(x \rightarrow 2: \text{Knows}(2, \text{BFF}(2)) \rightarrow \text{Knows}(2,3) \rightarrow T\)
 - \(x \rightarrow 3: \text{Knows}(3, \text{BFF}(3)) \rightarrow \text{Knows}(3,1) \rightarrow F\)
Syntax and semantics: Complex sentences

- Sentences with logical connectives: $\neg \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
 - $\exists x \text{ Knows}(x, \text{BFF}(x))$
 - True in world w iff true in some extension of w where x refers to an object in w
 - $x \rightarrow 1$: $\text{Knows}(1, \text{BFF}(1)) \rightarrow \text{Knows}(1,2) \rightarrow T$
 - $x \rightarrow 2$: $\text{Knows}(2, \text{BFF}(2)) \rightarrow \text{Knows}(2,3) \rightarrow T$
 - $x \rightarrow 3$: $\text{Knows}(3, \text{BFF}(3)) \rightarrow \text{Knows}(3,1) \rightarrow F$
Fun with sentences

- Everyone knows President Obama
 - $\forall n \text{ Person}(n) \Rightarrow \text{Knows}(n,\text{Obama})$

- There is someone that everyone knows
 - $\exists s \text{ Person}(s) \land \forall n \text{ Person}(n) \Rightarrow \text{Knows}(n,s)$

- Everyone knows someone
 - $\forall x \text{ Person}(x) \Rightarrow \exists y \text{ Person}(y) \land \text{Knows}(x,y)$
More fun with sentences

- Any two people of the same nationality speak a common language
 - Nationality(x,n) – x has nationality n
 - Speaks(x,l) – x speaks language l
 - ∀x,y (∃ n Nationality(x,n) ∧ Nationality(y,n)) ⇒
 (∃ l Speaks(x,l) ∧ Speaks(y,l))
Entailment is defined exactly as for propositional logic:
- \(\alpha \models \beta \) ("\(\alpha \) entails \(\beta \)"") iff in every world where \(\alpha \) is true, \(\beta \) is also true
- E.g., \(\forall x \text{Knows}(x,\text{Obama}) \) entails \(\exists y \forall x \text{Knows}(x,y) \)

In FOL, we can go beyond just answering “yes” or “no”; given an existentially quantified query, return a substitution (or binding) for the variable(s) such that the resulting sentence is entailed:
- \(\text{KB} = \forall x \text{Knows}(x,\text{Obama}) \)
- \(\text{Query} = \exists y \forall x \text{Knows}(x,y) \)
- \(\text{Answer} = \text{Yes}, \sigma = \{y/\text{Obama}\} \)
- Notation: \(\alpha \sigma \) means applying substitution \(\sigma \) to sentence \(\alpha \)
 - E.g., if \(\alpha = \forall x \text{Knows}(x,y) \) and \(\sigma = \{y/\text{Obama}\} \), then \(\alpha \sigma = \forall x \text{Knows}(x,\text{Obama}) \)
Inference in FOL: Propositionalization

- Convert \((\text{KB} \land \neg \alpha)\) to PL, use a PL SAT solver to check (un)satisfiability
 - Trick: replace variables with ground terms, convert atomic sentences to symbols
 - \(\forall x \text{Knows}(x,\text{Obama})\) and \(\text{Democrat}(\text{Feinstein})\)
 - \(\text{Knows}(\text{Obama},\text{Obama})\) and \(\text{Knows}(\text{Feinstein},\text{Obama})\) and \(\text{Democrat}(\text{Feinstein})\)
 - \(\text{Knows}_{-\text{Obama}}\text{Obama} \land \text{Knows}_{-\text{Feinstein}}\text{Obama} \land \text{Democrat}_{-\text{Feinstein}}\)
 - and \(\forall x \text{Knows}(\text{Mother}(x),x)\)
 - \(\text{Knows}(\text{Mother}(\text{Obama}),\text{Obama})\) and \(\text{Knows}(\text{Mother}(\text{Mother}(\text{Obama})),\text{Mother}(\text{Obama}))\)
 - Real trick: for \(k = 1\) to infinity, use all possible terms of function nesting depth \(k\)
 - If entailed, will find a contradiction for some finite \(k\) (Herbrand); if not, may continue for ever; *semidecidable*
Inference in FOL: Lifted inference

- Apply inference rules directly to first-order sentences, e.g.,
 - KB = Person(Socrates), \(\forall x \) Person(x) \(\Rightarrow \) Mortal(x)
 - conclude Mortal(Socrates)
 - The general rule is a version of Modus Ponens:
 - Given \(\alpha \Rightarrow \beta \) and \(\alpha' \sigma = \alpha \sigma \) for some substitution \(\sigma \), conclude \(\beta \sigma \)
 - \(\sigma \) is \{x/Socrates\}
 - Given Knows(x,Obama) and Knows(y,z) \(\Rightarrow \) Likes(y,z)
 - \(\sigma \) is \{y/x, z/Obama\}, conclude Likes(x,Obama)
- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers
Summary, pointers

- FOL is a very expressive formal language
- Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 10)
 - circuits, software, planning, law, taxes, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.
- Inference is semidecidable in general; many problems are efficiently solvable in practice
- Inference technology for logic programming is especially efficient (see AIMA Ch. 9)