CS 188: Artificial Intelligence

Introduction to Logic

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley
1. Introduction to logic
 ▪ Basic concepts of knowledge, logic, reasoning
 ▪ Propositional logic: syntax and semantics
2. Propositional logic: inference
3. Agents using propositional logic
4. First-order logic
Agents that know things

- Agents acquire knowledge through perception, learning, language
 - Knowledge of the effects of actions ("transition model")
 - Knowledge of how the world affects sensors ("sensor model")
 - Knowledge of the current state of the world
- Can keep track of a partially observable world
- Can formulate plans to achieve goals
- Can design and build gravitational wave detectors.....
Knowledge, contd.

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - *Tell* it what it needs to know (or have it *Learn* the knowledge)
 - Then it can *Ask* itself what to do—answers should follow from the KB
- Agents can be viewed at the *knowledge level*
 i.e., what they *know*, regardless of how implemented
- A single inference algorithm can answer any answerable question

<table>
<thead>
<tr>
<th>Knowledge base</th>
<th>Domain-specific facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inference engine</td>
<td>Generic code</td>
</tr>
</tbody>
</table>
- **Syntax**: What sentences are allowed?
- **Semantics**:
 - What are the *possible worlds*?
 - Which sentences are *true* in which worlds? (i.e., *definition* of truth)
Different kinds of logic

- **Propositional logic**
 - Syntax: $P \lor (\neg Q \land R); \quad \chi_1 \iff (\text{Raining} \Rightarrow \neg \text{Sunny})$
 - Possible world: \{\text{P=\text{true}, Q=\text{true, R=\text{false, S=\text{true}}}}\} \text{ or } 1101
 - Semantics: $\alpha \land \beta$ is true in a world iff α true and β is true (etc.)

- **First-order logic**
 - Syntax: $\forall x \exists y \ P(x,y) \land \neg Q(\text{Joe, f(x)}) \Rightarrow f(x)=f(y)$
 - Possible world: Objects o_1, o_2, o_3; P holds for $<o_1, o_2>$; Q holds for $<o_3>$; $f(o_1)=o_1$; $\text{Joe}=o_3$; etc.
 - Semantics: $\varphi(\sigma)$ is true in a world if $\sigma=\sigma_j$ and φ holds for o_j; etc.
Different kinds of logic, contd.

- **Relational databases:**
 - Syntax: ground relational sentences, e.g., $\textit{Sibling}(\textit{Ali}, \textit{Bo})$
 - Possible worlds: (typed) objects and (typed) relations
 - Semantics: sentences in the DB are true, everything else is false
 - Cannot express disjunction, implication, universals, etc.
 - Query language (SQL etc.) typically some variant of first-order logic
 - Often augmented by first-order rule languages, e.g., Datalog

- **Knowledge graphs (roughly: relational DB + ontology of types and relations)**
 - Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
 - Facebook network: 2.8 billion people, trillions of posts, maybe quadrillions of facts
Inference: entailment

- **Entailment**: $\alpha \models \beta$ ("α entails β" or "β follows from α") iff in every world where α is true, β is also true
 - i.e., the α-worlds are a subset of the β-worlds $[\text{models}(\alpha) \subseteq \text{models}(\beta)]$
- In the example, $\alpha_2 \models \alpha_1$
- (Say α_2 is $\neg Q \land R \land S \land W$
 α_1 is $\neg Q$)

\[\alpha_1\]
\[\alpha_2\]
Inference: proofs

- A proof is a *demonstration* of entailment between α and β
- *Sound* algorithm: everything it claims to prove is in fact entailed
- *Complete* algorithm: every that is entailed can be proved
Inference: proofs

- **Method 1: model-checking**
 - For every possible world, if α is true make sure that is β true too
 - OK for propositional logic (finitely many worlds); not easy for first-order logic

- **Method 2: theorem-proving**
 - Search for a sequence of proof steps (applications of *inference rules*) leading from α to β
 - E.g., from $P \land (P \Rightarrow Q)$, infer Q by *Modus Ponens*
Propositional logic syntax

- Given: a set of proposition symbols \{X_1, X_2, ..., X_n\}
 - (we often add True and False for convenience)
- \(X_i\) is a sentence
- If \(\alpha\) is a sentence then \(\neg\alpha\) is a sentence
- If \(\alpha\) and \(\beta\) are sentences then \(\alpha \land \beta\) is a sentence
- If \(\alpha\) and \(\beta\) are sentences then \(\alpha \lor \beta\) is a sentence
- If \(\alpha\) and \(\beta\) are sentences then \(\alpha \Rightarrow \beta\) is a sentence
- If \(\alpha\) and \(\beta\) are sentences then \(\alpha \Leftrightarrow \beta\) is a sentence
- And p.s. there are no other sentences!
Propositional logic semantics

- Let m be a model assigning **true** or **false** to $\{X_1, X_2, \ldots, X_n\}$
- If α is a symbol then its truth value is given in m
- $\neg\alpha$ is true in m iff α is false in m
- $\alpha \wedge \beta$ is true in m iff α is true in m and β is true in m
- $\alpha \vee \beta$ is true in m iff α is true in m or β is true in m
- $\alpha \Rightarrow \beta$ is true in m iff α is false in m or β is true in m
- $\alpha \Leftrightarrow \beta$ is true in m iff $\alpha \Rightarrow \beta$ is true in m and $\beta \Rightarrow \alpha$ is true in m
Propositional logic semantics in code

function PL-TRUE?(α, model) returns true or false

if α is a symbol then return Lookup(α, model)

if Op(α) = ¬ then return not(PL-TRUE?(Arg1(α), model))

if Op(α) = ∧ then return and(PL-TRUE?(Arg1(α), model),
 PL-TRUE?(Arg2(α), model))

etc.

(Sometimes called “recursion over syntax”)
Example: Partially observable Pacman

- Pacman knows the map but perceives just wall/gap to NSEW
- Formulation: *what variables do we need?*
 - Wall locations
 - Wall_0,0 there is a wall at [0,0]
 - Wall_0,1 there is a wall at [0,1], etc. (*N* symbols for *N* locations)
 - Percepts
 - Blocked_W (blocked by wall to my West) etc.
 - Blocked_W_0 (blocked by wall to my West *at time 0*) etc. (*4T* symbols for *T* time steps)
 - Actions
 - W_0 (Pacman moves West at time 0), E_0 etc. (*4T* symbols)
 - Pacman’s location
 - At_0,0_0 (Pacman is at [0,0] at time 0), At_0,1_0 etc. (*NT* symbols)
How many possible worlds?

- N locations, T time steps $\Rightarrow N + 4T + 4T + NT = O(NT)$ variables
- $O(2^{NT})$ possible worlds!
- $N=200$, $T=400$ $\Rightarrow \sim 10^{24000}$ worlds
- Each world is a complete “history”
 - But most of them are pretty weird!
Pacman’s knowledge base: Map

- Pacman knows where the walls are:
 - \(\text{Wall	extsubscript{0,0}} \land \text{Wall	extsubscript{0,1}} \land \text{Wall	extsubscript{0,2}} \land \text{Wall	extsubscript{0,3}} \land \text{Wall	extsubscript{0,4}} \land \text{Wall	extsubscript{1,4}} \land \ldots \)

- Pacman knows where the walls aren’t:
 - \(\neg \text{Wall	extsubscript{1,1}} \land \neg \text{Wall	extsubscript{1,2}} \land \neg \text{Wall	extsubscript{1,3}} \land \neg \text{Wall	extsubscript{2,1}} \land \neg \text{Wall	extsubscript{2,2}} \land \ldots \)
Pacman’s knowledge base: Initial state

- Pacman doesn’t know where he is
- But he knows he’s somewhere!
 - $\text{At}_{1,1,0} \lor \text{At}_{1,2,0} \lor \text{At}_{1,3,0} \lor \text{At}_{2,1,0} \lor \ldots$
Pacman’s knowledge base: Sensor model

State facts about how Pacman’s percepts arise…

- \(\langle \text{Percept variable at } t \rangle \Leftrightarrow \langle \text{some condition on world at } t \rangle \)

- Pacman perceives a wall to the West at time \(t \) if and only if he is in \(x,y \) and there is a wall at \(x-1,y \)

- \(\text{Blocked}_W_0 \Leftrightarrow ((\text{At}_1,1_0 \land \text{Wall}_0,1) \lor (\text{At}_1,2_0 \land \text{Wall}_0,2) \lor (\text{At}_1,3_0 \land \text{Wall}_0,3) \lor \ldots) \)

- \(4T \) sentences, each of size \(O(N) \)

- Note: these are valid for any map
Pacman’s knowledge base: Transition model

- How does each **state variable** at each time gets its value?
 - Here we care about location variables, e.g., **At_3,3_17**
- A state variable X gets its value according to a **successor-state axiom**
 - \(X_t \Leftrightarrow [X_{t-1} \land \neg ((\text{some action}_{t-1} \text{ made it false})] \lor [\neg X_{t-1} \land (\text{some action}_{t-1} \text{ made it true})] \)
- For Pacman location:
 - \(\text{At}_3,3_17 \Leftrightarrow [\text{At}_3,3_16 \land \neg ((\neg \text{Wall}_3,4 \land \text{N}_16) \lor (\neg \text{Wall}_4,3 \land \text{E}_16) \lor ...) \lor [\neg \text{At}_3,3_16 \land ((\text{At}_3,2_16 \land \neg \text{Wall}_3,3 \land \text{N}_16) \lor (\text{At}_2,3_16 \land \neg \text{Wall}_3,3 \land \text{N}_16) \lor ...)] \)
How many sentences?

- Vast majority of KB occupied by \(O(NT)\) transition model sentences
 - Each about 10 lines of text
 - \(N=200, T=400\) => \(\sim 800,000\) lines of text, or 20,000 pages
- This is because propositional logic has limited expressive power
- Are we really going to write 20,000 pages of logic sentences???
- No, but your code will generate all those sentences!
- In first-order logic, we need \(O(1)\) transition model sentences
- (State-space search uses atomic states: how do we keep the transition model representation small???)
A knowledge-based agent

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
 t, an integer, initially 0

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

action ← ASK(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE(action, t))

t←t+1

return action
Some reasoning tasks

- Localization with a map and local sensing:
 - Given an initial KB, plus a sequence of percepts and actions, where am I?
- Mapping with a location sensor:
 - Given an initial KB, plus a sequence of percepts and actions, what is the map?
- Simultaneous localization and mapping:
 - Given …, where am I and what is the map?
- Planning:
 - Given …, what action sequence is guaranteed to reach the goal?
- **ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!!**
Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge
 - A logic is defined by: syntax, set of possible worlds, truth condition
- A simple KB for Pacman covers the initial state, sensor model, and transition model
- Logical inference computes entailment relations among sentences, enabling a wide range of tasks to be solved