CS 188: Artificial Intelligence

Adversarial Search

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley
Outline

- History / Overview
- Minimax for Zero-Sum Games
- α-β Pruning
- Finite lookahead and evaluation
A brief history

- **Checkers:**
 - 1950: First computer player.
 - 1959: Samuel’s self-taught program.
 - 1994: First computer world champion: Chinook defeats Tinsley
 - 2007: Checkers solved! Endgame database of 39 trillion states

- **Chess:**
 - 1960s onward: gradual improvement under “standard model”
 - 1997: Deep Blue defeats human champion Garry Kasparov
 - 2021: Stockfish rating 3551 (vs 2870 for Magnus Carlsen).

- **Go:**
 - 1968: Zobrist’s program plays legal Go, barely (b>300!)
 - 1968-2005: various ad hoc approaches tried, novice level
 - 2005-2014: Monte Carlo tree search -> strong amateur
 - 2016-2017: AlphaGo defeats human world champions

- **Pacman**
Types of Games

- Game = task environment with > 1 agent

- Axes:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - One, two, or more players?
 - Turn-taking or simultaneous?
 - Zero sum?

- Want algorithms for calculating a **contingent plan** (a.k.a. **strategy** or **policy**) which recommends a move for every possible eventuality
“Standard” Games

- Standard games are deterministic, observable, two-player, turn-taking, zero-sum
- Game formulation:
 - Initial state: s_0
 - Players: Player(s) indicates whose move it is
 - Actions: Actions(s) for player on move
 - Transition model: Result(s, a)
 - Terminal test: Terminal-Test(s)
 - Terminal values: Utility(s, p) for player p
 - Or just Utility(s) for player making the decision at root
Zero-Sum Games

- Zero-Sum Games
 - Agents have *opposite* utilities
 - Pure competition:
 - One *maximizes*, the other *minimizes*

- General Games
 - Agents have *independent* utilities
 - Cooperation, indifference, competition, shifting alliances, and more are all possible
Adversarial Search
Single-Agent Trees
Value of a State

Value of a state: The best achievable outcome (utility) from that state

Non-Terminal States:

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

Terminal States:

\[V(s) = \text{known} \]
Tic-Tac-Toe Game Tree

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

-1

0

+1
Minimax Values

MAX nodes: under Agent’s control
$V(s) = \max_{s' \in \text{successors}(s)} V(s')$

MIN nodes: under Opponent’s control
$V(s) = \min_{s' \in \text{successors}(s)} V(s')$

Terminal States:
$V(s) = \text{known}$
Minimax algorithm

- Choose action leading to state with best \textit{minimax value}
- Assumes all future moves will be optimal
- \(\Rightarrow\) rational against a rational player
Implementation

function minimax-decision(s) returns an action
return the action a in Actions(s) with the highest minimax_value(Result(s,a))

function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return \(\max_{a \in \text{Actions}(s)} \) minimax_value(Result(s,a))
if Player(s) = MIN then return \(\min_{a \in \text{Actions}(s)} \) minimax_value(Result(s,a))
Generalized minimax

- What if the game is not zero-sum, or has multiple players?

- Generalization of minimax:
 - Terminals have *utility tuples*
 - Node values are also utility tuples
 - *Each player maximizes its own component*
 - Can give rise to cooperation and competition dynamically…
Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: $O(b^m)$
 - Space: $O(bm)$

- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - Humans can’t do this either, so how do we play chess?
Game Tree Pruning
Minimax Example
\[\alpha = \text{best option so far from any MAX node on this path} \]

\[\alpha = 3 \]

\[\alpha = 3 \]

The order of generation matters: more pruning is possible if good moves come first.
Alpha-Beta Quiz
Alpha-Beta Quiz 2

\[\alpha = 10 \]

\[\beta = 10 \]

\[\alpha = 10 \]

\[\alpha = 100 \]

\[\beta = 2 \]

\[\alpha = 2 \]

\[10 \]
Alpha-Beta Pruning

- General case (pruning children of MIN node)
 - We’re computing the MIN-VALUE at some node \(n \)
 - We’re looping over \(n \)’s children
 - \(n \)’s estimate of the childrens’ min is dropping
 - Who cares about \(n \)’s value? MAX
 - Let \(\alpha \) be the best value that MAX can get so far at any choice point along the current path from the root
 - If \(n \) becomes worse than \(\alpha \), MAX will avoid it, so we can prune \(n \)’s other children (it’s already bad enough that it won’t be played)

- Pruning children of MAX node is symmetric
 - Let \(\beta \) be the best value that MIN can get so far at any choice point along the current path from the root
Alpha-Beta Implementation

\[\alpha: \text{MAX's best option on path to root} \]
\[\beta: \text{MIN's best option on path to root} \]

def max-value(state, \(\alpha, \beta \)):
- initialize \(v = -\infty \)
- for each successor of state:
 - \(v = \max(v, \text{value(successor, } \alpha, \beta)) \)
 - if \(v \geq \beta \)
 - return \(v \)
 - \(\alpha = \max(\alpha, v) \)
- return \(v \)

def min-value(state, \(\alpha, \beta \)):
- initialize \(v = +\infty \)
- for each successor of state:
 - \(v = \min(v, \text{value(successor, } \alpha, \beta)) \)
 - if \(v \leq \alpha \)
 - return \(v \)
 - \(\beta = \min(\beta, v) \)
- return \(v \)
Alpha-Beta Pruning Properties

- Theorem: This pruning has **no effect** on minimax value computed for the root!

- Good child ordering improves effectiveness of pruning
 - Iterative deepening helps with this

- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!

- This is a simple example of **metareasoning** (reasoning about reasoning)

- For chess: only 35^{50} instead of 35^{100}!! Yaaay!!!!
Resource Limits
Resource Limits

- Problem: In realistic games, cannot search to leaves!

- Solution 1: Bounded lookahead
 - Search only to a preset depth limit or horizon
 - Use an evaluation function for non-terminal positions

- Guarantee of optimal play is gone

- More plies make a BIG difference

- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - Chess with alpha-beta, $35^{(8/2)} = \sim 1M$; depth 8 is good
Depth Matters

- Evaluation functions are always imperfect
- Deeper search \Rightarrow better play (usually)
- Or, deeper search gives same quality of play with a less accurate evaluation function
- An important example of the tradeoff between complexity of features and complexity of computation

[Demo: depth limited (L6D4, L6D5)]
Pacman with Depth-2 Lookahead
Pacman with Depth-10 Lookahead
Evaluation Functions
Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search

- Typically weighted linear sum of features:
 - \(\text{EVAL}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \)
 - E.g., \(w_1 = 9, f_1(s) = \text{(num white queens} - \text{num black queens)} \), etc.

- Or a more complex nonlinear function (e.g., NN) trained by self-play RL

- Terminate search only in \textit{quiescent} positions, i.e., no major changes expected in feature values
Evaluation for Pacman
Generalized minimax

- What if the game is not zero-sum, or has multiple players?

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically…
Emergent coordination in ghosts
Summary

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges – lots to do!
 - \(b = 10^{500}, \ |S| = 10^{4000}, \ m = 10,000 \)