Q1. Game Trees

The following problems are to test your knowledge of Game Trees.

(a) Minimax

The first part is based upon the following tree. Upward triangle nodes are maximizer nodes and downward are minimizers. (small squares on edges will be used to mark pruned nodes in part (ii))

(i) Complete the game tree shown above by filling in values on the maximizer and minimizer nodes.

(ii) Indicate which nodes can be pruned by marking the edge above each node that can be pruned (you do not need to mark any edges below pruned nodes). In the case of ties, please prune any nodes that could not affect the root node’s value. Fill in the bubble below if no nodes can be pruned.

○ No nodes can be pruned

Edges that can be pruned: (parent-child) 10-2, 4-6, 6-0, 6-5, 6-6. So mark: 10-2, 4-6
(b) **Food Dimensions**

The following questions are completely unrelated to the above parts.

Pacman is playing a tricky game. There are 4 portals to food dimensions. But, these portals are guarded by a ghost. Furthermore, neither Pacman nor the ghost know for sure how many pellets are behind each portal, though they know what options and probabilities there are for all but the last portal.

Pacman moves first, either moving West or East. After which, the ghost can block 1 of the portals available.

You have the following gametree. The maximizer node is Pacman. The minimizer nodes are ghosts and the portals are chance nodes with the probabilities indicated on the edges to the food. In the event of a tie, the left action is taken. Assume Pacman and the ghosts play optimally.

(i) Fill in values for the nodes that do not depend on X and Y.

(ii) What conditions must X and Y satisfy for Pacman to move East? What about to definitely reach the P4? Keep in mind that X and Y denote numbers of food pellets and must be **whole numbers**: $X, Y \in \{0, 1, 2, 3, \ldots \}$.

To move East: $X + Y > 128$

To reach P4: $X + Y = 129$

The first thing to note is that, to pick A over B, $value(A) > value(B)$. Also, the expected value of the parent node of X and Y is $\frac{X+Y}{2}$.

$\implies min(65, \frac{X+Y}{2}) > 64$

$\implies \frac{X+Y}{2} > 64$

So, $X + Y > 128 \implies value(A) > value(B)$

To ensure reaching X or Y, apart from the above, we also have $\frac{X+Y}{2} < 65$

$\implies 128 < X + Y < 130$

So, $X, Y \in \mathbb{N} \implies X + Y = 129$
Q2. Bike Bidding Battle

Alyssa P. Hacker and Ben Bitdiddle are bidding in an auction at Stanley University for a bike. Alyssa will either bid x_1, x_2, or x_3 for the bike. She knows that Ben will bid y_1, y_2, y_3, y_4, or y_5, but she does not know which. All bids are nonnegative.

(a) Alyssa wants to maximize her payoff given by the expectimax tree below. The leaf nodes show Alyssa’s payoff. The nodes are labeled by letters, and the edges are labeled by the bid values x_i and y_i. The maximization node S represents Alyssa, and the branches below it represent each of her bids: x_1, x_2, x_3. The chance nodes P, Q, R represent Ben, and the branches below them represent each of his bids: y_1, y_2, y_3, y_4, y_5.

(i) Suppose that Alyssa believes that Ben would bid any bid with equal probability. What are the values of the chance (circle) and maximization (triangle) nodes?

1. Node P __________ 0.4 __________
2. Node Q __________ 0.6 __________
3. Node R __________ 0 __________
4. Node S __________ 0.6 __________

(ii) Based on the information from the above tree, how much should Alyssa bid for the bike?

○ x_1 ● x_2 ○ x_3

(b) Alyssa does expectimax search by visiting child nodes from left to right. Ordinarily expectimax trees cannot be pruned without some additional information about the tree. Suppose, however, that Alyssa knows that the leaf nodes are ordered such that payoffs are non-increasing from left to right (the leaf nodes of the above diagram is an example of this ordering). Recall that if node X is a child of a maximizer node, a child of node X may be pruned if we know that the value of node X will never be $> \text{some threshold}$ (in other words, it is $\leq \text{that threshold}$). Given this information, if it is possible to prune any branches from the tree, mark them below. Otherwise, mark “None of the above.”
To prune the children of a chance node in an expectimax tree, Alyssa would need to keep track of a
threshold on the value of the chance node: if at some point while searching left to right, she realizes that
the value of the chance node will never be higher than its threshold, she can prune the remaining children
of the chance node.

Alyssa needs to search the entire left subtree because she does not have a threshold against which to
compare the value of P.

When Alyssa searches the center subtree, she knows that the maximizing node will only consider taking
action x_2 if the value of Q is higher than the value of P, which is 0.4. If at some point Alyssa realizes that
the value of Q will never be higher than 0.4, she can prune the remaining children. After exploring node
G, Alyssa knows that nodes H, I, and J are ≤ 1, which means that the value of node Q is at most 1.2.
After exploring node H, Alyssa knows that nodes I and J are ≤ 0, which means that the value of node Q
is at most 0.6. After exploring node I, Alyssa knows that node J is ≤ 0, which means that the value of
node Q is at most 0.6. This is not enough information to prune any of the nodes in the center subtree
because at no point does Alysa know for sure that the value of Q is ≤ 0.4.

When Alyssa searches the right subtree, if at some point Alyssa realizes that the value of R will never be
higher than 0.6, then she can prune the remaining of children of R. After exploring node L, Alyssa knows
that the nodes M, N, and O are ≤ 1, which means that the value of node R is at most 1.2. After exploring
node M, Alyssa knows that nodes N and O are ≤ 0, which means that the value of node Q is at most 0.6.
At this point, Alyssa can prune nodes N and O because they can only make the value of R lower than the
value of Q.

(c) Unrelated to parts (a) and (b), consider the minimax tree below, whose leaves represent payoffs for the
maximizer. The crossed out edges show the edges that are pruned when doing naive alpha-beta pruning
visiting children nodes from left to right. Assume that we prune on equalities (as in, we prune the rest
of the children if the current child is $\leq \alpha$ (if the parent is a minimizer) or $\geq \beta$ (if the parent is a maximizer)).

Fill in the inequality expressions for the values of the labeled nodes A and B. Write ∞ and $-\infty$ if there
is no upper or lower bound, respectively.
1. $6 \leq A \leq \infty$

2. $-\infty \leq B \leq 4$

(d) Suppose node B took on the largest value it could possibly take on and still be consistent with the pruning scheme above. After running the pruning algorithm, we find that the values of the left and center subtrees have the same minimax value, both 1 greater than the minimax value of the right subtree. Based on this information, what is the numerical value of node C?

1 2 3 4 5 6 7 8 9 10

(e) For which values of nodes D and E would choosing to take action z_2 be guaranteed to yield the same payoff as action z_1? Write ∞ and $-\infty$ if there is no upper or lower bound, respectively (this would correspond to the case where nodes D and E can be any value).

1. $4 \leq D \leq \infty$

2. $4 \leq E \leq \infty$

When doing naive alpha-beta pruning, the values propagated up to the parent nodes are not necessarily exact, but rather bounds. If $D < 4$ or $E < 4$, then the true minimax value of the center subtree is less than the true minimax value of the left subtree.