Q1. Decision Trees

(a) You are given a dataset for training a decision tree. The goal is to predict the label (+ or -) given the binary features A, B, and C.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

First, consider building a decision tree by greedily splitting according to information gain.

(i) Which features could be at the root of the resulting tree? Select all possible answers.

A []
B []
C []

A and C yield maximal information gain at the root.

(ii) How many edges are there in the longest path of the resulting tree? Select all possible answers.

1 []
2 []
3 []
4 []
5 []
None of the above

Regardless of the choice of the feature at the root, the resulting tree needs to consider all 3 features in a path, so there are 3 edges in that path.

Now consider building a decision tree with the smallest possible height.

(iii) Which features could be at the root of the resulting tree? Select all possible answers.

A []
B []
C []

The optimal decision tree first splits on B. For the B=0 branch, the next split is on A; for the B = 1 branch, the next split is on C.

(iv) How many edges are there in the longest path of the resulting tree? Select all possible answers.

1 []
2 []
3 []
4 []
5 []
None of the above

As can be seen from the answer to the previous part, the optimal tree has two edges per path from the root to any leaf.
(b) You are given points from 2 classes, shown as +’s and -’s. For each of the following sets of points,

1. Draw the decision tree of depth at most 2 that can separate the given data completely, by filling in binary predicates (which only involve thresholding of a single variable) in the boxes for the decision trees below. If the data is already separated when you hit a box, simply write the class, and leave the sub-tree hanging from that box empty.

2. Draw the corresponding decision boundaries on the scatter plot, and write the class labels for each of the resulting bins somewhere inside the resulting bins.

If the data can not be separated completely by a depth 2 decision tree, simply cross out the tree template. We solve the first part as an example.
Q2. Perceptron Feature Maps

(a) For each of the datasets represented by the graphs below, please select the feature maps for which the perceptron algorithm can perfectly classify the data.

Each data point is in the form \((x_1, x_2)\), and has some label \(Y\), which is either a 1 (dot) or -1 (cross).

(i) \[
\begin{bmatrix}
\cdot & 1 \\
\cdot & x_2 \\
\cdot & x_1 \\
\cdot & |x_1| \\
\cdot & x_1 x_2 \\
\cdot & x_2 \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{bmatrix}
\]

(ii) \[
\begin{bmatrix}
\cdot & 1 \\
\cdot & x_2 \\
\cdot & x_1 \\
\cdot & |x_1| \\
\cdot & x_1 x_2 \\
\cdot & x_2 \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{bmatrix}
\]

(iii) \[
\begin{bmatrix}
\cdot & 1 \\
\cdot & x_2 \\
\cdot & x_1 \\
\cdot & |x_1| \\
\cdot & x_1 x_2 \\
\cdot & x_2 \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{bmatrix}
\]