Q1. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

\[P(A)P(B)P(C|A,B)P(D|A,B)P(E|C,D) \]

(b) Draw the Bayes net associated with the following joint distribution:

\[P(A) \cdot P(B) \cdot P(C|A,B) \cdot P(D|C) \cdot P(E|B,C) \]

(c) Do the following products of factors correspond to a valid joint distribution over the variables A, B, C, D? (Circle FALSE or TRUE.)

(i) **FALSE** TRUE \[P(A) \cdot P(B) \cdot P(C|A) \cdot P(C|B) \cdot P(D|C) \]

(ii) **FALSE** **TRUE** \[P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B,C) \]

(iii) **FALSE** **TRUE** \[P(A) \cdot P(B|A) \cdot P(C) \cdot P(C|A) \cdot P(D) \]

(iv) **FALSE** **TRUE** \[P(A|B) \cdot P(B|C) \cdot P(C|D) \cdot P(D|A) \]
(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write “none” if the given set of factors can’t be turned into a joint by the inclusion of exactly one more factor.)

(i) \(P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(E|B, C, D) \)

\(P(D) \) is missing. \(D \) could also be conditioned on \(A, B, \) and/or \(C \) without creating a cycle (e.g. \(P(D|A, B, C) \)). Here is an example Bayes net that would represent the distribution after adding in \(P(D) \):

![Bayes Net Diagram](image)

(ii) \(P(D) \cdot P(B) \cdot P(C|D, B) \cdot P(E|C, D, A) \)

\(P(A) \) is missing to form a valid joint distributions. \(A \) could also be conditioned on \(B, C, \) and/or \(D \) (e.g. \(P(A|B, C, D) \)). Here is a Bayes net that would represent the distribution is \(P(A|D) \) was added in.

![Bayes Net Diagram](image)

(e) Answer the next questions based off of the Bayes Net below:

All variables have domains of \(\{-1, 0, 1\} \)

(i) Before eliminating any variables or including any evidence, how many entries does the factor at \(G \) have?

The factor is \(P(G|B, C) \), so that gives \(3^3 = 27 \) entries.

(ii) Now we observe \(e = 1 \) and want to query \(P(D|e = 1) \), and you get to pick the first variable to be eliminated.

- Which choice would create the largest factor \(f_1 \)?

 Eliminating \(B \) first would give the largest \(f_1 \): \(f_1(A, F, G, C, e) = \sum_{b, a, p, f} P(b)P(e|A, b)P(F|b)P(G|b, C)P(C|b)P(G|b, C) \). This factor has \(3^4 \) entries.

- Which choice would create the smallest factor \(f_1 \)?

 Eliminating \(F \) first would give smallest factors of 3 entries: \(f_1(B) = \sum_f P(f|B) \). Eliminating \(D \) is not correct because \(D \) is the query variable.
Q2. Bayes Nets: Sampling

Consider the following Bayes Net, where we have observed that \(B = +b \) and \(D = +d \).

- **Part (a)**: Consider doing Gibbs sampling for this example. Assume that we have initialized all variables to the values \(+a, +b, +c, +d\). We then unassign the variable \(C \), such that we have \(A = +a, B = +b, C = ?, D = +d \). Calculate the probabilities for new values of \(C \) at this stage of the Gibbs sampling procedure.

\[
P(C = +c \text{ at the next step of Gibbs sampling}) = \frac{0.1 \times 0.6}{0.1 \times 0.6 + 0.9 \times 0.1} = \frac{2}{5}
\]

\[
P(C = -c \text{ at the next step of Gibbs sampling}) = \frac{0.9 \times 0.1}{0.1 \times 0.6 + 0.9 \times 0.1} = \frac{3}{5}
\]

- **Part (b)**: Consider a sampling scheme that is a hybrid of rejection sampling and likelihood-weighted sampling. Under this scheme, we first perform rejection sampling for the variables \(A \) and \(B \). We then take the sampled values for \(A \) and \(B \) and extend the sample to include values for variables \(C \) and \(D \), using likelihood-weighted sampling.

 (i) Below is a list of candidate samples. Mark the samples that would be rejected by the rejection sampling portion of the hybrid scheme.

 - \(-a\) \(-b\)
 - \(+a\) \(+b\)
 - \(+a\) \(-b\)
 - \(-a\) \(+b\)

 (ii) To decouple from part (i), you now receive a new set of samples shown below. Fill in the weights for these samples under our hybrid scheme.

- **Part (iii)**: Use the weighted samples from part (ii) to calculate an estimate for \(P(+a| +b, +d) \).

The estimate of \(P(+a| +b, +d) \) is

\[
\frac{0.1 + 0.1 + 0.6}{0.5 + 0.1 + 0.1 + 0.2 + 0.6} = \frac{8}{15}
\]
(c) We now attempt to design an alternative hybrid sampling scheme that combines elements of likelihood-weighted and rejection sampling. For each proposed scheme, indicate whether it is valid, i.e. whether the weighted samples it produces correctly approximate the distribution $P(A, C | +b, +d)$.

(i) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling for the variables C and D. In case of rejection, the values of A and B and the sample weight are thrown away. Sampling then restarts from node A.

- Valid ○ Invalid

(ii) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling for the variables C and D. In case of rejection, the values of A and B and the sample weight are retained. Sampling then restarts from node C.

- Valid ○ Invalid

The sampling procedure in part (i) is the correct way of combining likelihood-weighted and rejection sampling: any time a node gets rejected, the sample must be thrown out in its entirety. In part (ii), however, the evidence that $D = +d$ has no effect on which values of A are sampled or on the sample weights. This means that values for A would be sampled according to $P(A | +b)$, not $P(A | +b, +d)$.

As an extreme case, suppose node D had a different probability table where $P(+d | +a) = 0$. Following the procedure from part (ii), we might start by sampling $(+a, +b)$ and assigning a weight according to $P(+b | +a)$. However, when we move on to rejection sampling we will be forced to continuously reject all possible values because our evidence $+d$ is inconsistent with our the assignment of $A = +a$. This means that the procedure from part (ii) is flawed to the extent that it might fail to generate a sample altogether!